FLUXAPYROXAD (256)

First draft prepared by Dr S Margerison, Australian Pesticides and Veterinary Medicines Authority, Canberra, Australia

EXPLANATION

Fluxapyroxad is a fungicide belonging to the carboxamide group of chemicals. It acts through inhibition of the enzyme succinate dehydrogenase, which is also known as complex II, in the mitochondrial electron transport chain. It is used as a foliar and seed treatment fungicide for control of a range of fungal diseases in cereals, fruit and vegetables.

Fluxapyroxad was evaluated by JMPR for the first time in 2012, when an ADI of 0– 0.02 mg/kg bw/day and an ARfD of 0.3 mg/kg bw were established. A residue definition of *fluxapyroxad* was recommended for plant and animal commodities, for compliance with MRLs. For estimation of dietary intake in plant commodities, a definition of *sum of fluxapyroxad*, 3-(*difluoromethyl*)-N-(3',4',5'-trifluoro-1,1'-biphenyl-2-yl)-1H-pyrazole-4-carboxamide

(M700F008), and 3-(difluoromethyl)-1- $(\beta$ -D-glucopyranosyl)-N-(3',4',5'-trifluoro-1,1'-biphenyl-2-yl)-1H-pyrazole-4-carboxamide (M700F048), expressed as fluxapyroxad, was recommended. For estimation of dietary intake in animal commodities, a definition of sum of fluxapyroxad and 3-(difluoromethyl)-N-(3',4',5'-trifluoro-1,1'-biphenyl-2-yl)-1H-pyrazole-4-carboxamide (M700F008), expressed as fluxapyroxad, was recommended. The residue is fat soluble.

At the 46th Session of the CCPR (2014), fluxapyroxad was scheduled for evaluation of additional use patterns by the 2015 JMPR.

The Meeting received residue data for citrus fruits, cherries, grapes, strawberries, caneberries, blueberries, mangoes, bananas, papaya, bulb vegetables, Brassica vegetables, cucurbits, leafy vegetables, root and tuber vegetables, celery, rice, sugar cane, almonds, pecans, and cotton (foliar application). Processing data for oranges, grapes, sugar cane and cotton were received. Product labels and information on MRLs established by national regulatory authorities were also provided.

Analytical methods

No new analytical methods were submitted to the Meeting. Residues of fluxapyroxad and its metabolites were determined using LC-MS/MS method number L0137/01 for all trials submitted to the Meeting. This method was reviewed by the 2012 Meeting. Appropriate concurrent recovery data was provided for all trials.

Stability of pesticide residues in stored analytical samples

Plant matrices

No new storage stability studies were submitted to the current Meeting. The 2012 Meeting evaluated the stability of residues of fluxapyroxad and the metabolites M700F002, M700F008, and M700F048 in a range of plant matrices. In the residue trials submitted to the Meeting, samples were analysed within 24 months of collection, within the period for which stability was verified by the studies submitted to the 2012 Meeting.

USE PATTERNS

Fluxapyroxad is a fungicide. It is registered for foliar and seed treatment use in a wide variety of fruits, vegetables, nuts, oilseeds, and cereals against a wide variety of diseases.

Table 1	Registered	uses of flu	xapyroxad	on crops	relevant to	this submission
	0					

Crop	Country	Application						
		Formulation	Туре	Rate, g ai/ha	Conc.	Spray	No. (RTI,	PHI,
					(g	volume	days)	days
					ai/hL)	(L/ha)		
Citrus fruit	D '1	001 <i>(7 /</i>	E 1'		0.04	2000	2 (7)	1.4
Citrus	Brazil	SC 16/ g/L	Foliar	-	0.84-	2000	3(7)	14
		(pyraciostrobili 333 g/L)			2.3			
Grapefruit	Mexico	SC 167 g/L	Foliar	50-67	_	460-560	2 (20)	14
		(pyraclostrobin					- ()	
		333 g/L)						
	Argentina	SC 167 g/L	Foliar	-	3.3	2000-	3	7
		(pyraclostrobin				5000		
-		333 g/L)				4.60		
Lemon	Mexico	SC 167 g/L	Foliar	50-67	-	460-560	2 (20)	14
		(pyraciostrobili 333 g/L)						
	Argentina	SC 167 v/L	Foliar		33	2000-	3	7
	i i gentinu	(pyraclostrobin	1 onui		5.5	5000	5	,
		333 g/L)						
Lime	Mexico	SC 167 g/L	Foliar	50-67	-	460-560	2 (20)	14
		(pyraclostrobin						
N 1 1	N .	333 g/L)	E 1'	50 (7		460 550	2 (20)	1.4
Mandarın	Mexico	SC 167 g/L	Foliar	50-67	-	460–560	2 (20)	14
		(pyraciostrobin)						
	Argentina	SC 167 g/L	Foliar	_	3.3	2000-	3	7
	i i gentinu	(pyraclostrobin	1 onui		5.5	5000	5	,
		333 g/L)						
Orange	Mexico	SC 167 g/L	Foliar	50-67	-	460-560	2 (20)	14
		(pyraclostrobin						
G. 6 1		333 g/L)						
Stone fruit	<u> </u>	FC (2.5 /I	E 1'	100			2 (7)	0
Stone fruit	Canada	EC 62.5 g/L	Foliar	100	-		3(7)	0
	USA	EC 62.5 g/L	Foliar	100	-		3(7)	0
	USA	SC 300 g/L	Foliar	123			3(7)	0
		SC 250 g/L	Foliar	73–123	_		3(7)	0
		(pyraclostrobin	1 onui	10 120			5(1)	Ŭ
		250 g/L)						
Berries and								
other small								
fruits	TICA			55 0 00			2 (7)	0
Bushberries	USA	EC 62.5 g/L	Foliar	75-200	-		3(7)	0
	USA	SC 300 g/L	Foliar	75-200	-		3(7)	0
	USA	(pyraclostrohin	ronar	/ 5-10/	-		3(7)	U
		333 g/L)						
	USA	SC 250 g/L	Foliar	73–200	-		3 (7)	0
		(pyraclostrobin						
		250 g/L)						
Caneberries	USA	EC 62.5 g/L	Foliar	75–200	-		3 (7)	0
	USA	SC 300 g/L	Foliar	75-200	-		3 (7)	0
	USA	SC 167 g/L	Foliar	73–107	-		3 (7)	0
		(pyraclostrobin						
	LISΔ	555 g/L) SC 250 g/I	Foliar	73_200	<u> </u>		3(7)	0
	USA	(pyraclostrohin	ronai	75-200			5(7)	0
		250 g/L)						
Low	USA	EC 62.5 g/L	Foliar	75–200	-		3 (7)	0
growing								
berries				ļ				
	USA	SC 300 g/L	Foliar	100-200			3 (7)	0

Crop	Country	Application						
		Formulation	Туре	Rate, g ai/ha	Conc. (g ai/hL)	Spray volume (L/ha)	No. (RTI, days)	PHI, days
	USA	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	73–107	-		3 (7)	0
	USA	SC 250 g/L (pyraclostrobin 250 g/L)	Foliar	146–200	_		3 (7)	0
Small climbing vine fruit	USA	EC 62.5 g/L	Foliar	75–200	-		3 (7)	14
	USA	SC 300 g/L	Foliar	100-200	-		3 (7)	14
	USA	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	73–107	-		3(7)	14
	USA	SC 250 g/L (pyraclostrobin 250 g/L)	Foliar	146–200	-		3 (7)	14
Grapes	USA	EC 62.5 g/L	Foliar	46–100	-		6 (10)	14
	USA	EC 62.5 g/L	Foliar	100-200	-		3 (10)	14
	USA	SC 300 g/L	Foliar	44-99	-		6 (10)	14
	USA	SC 300 g/L SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	49–199	_		3 (10)	14
	USA	SC 250 g/L (pyraclostrobin 250 g/L)	Foliar	73–100	-		6 (10)	14
	USA	SC 250 g/L (pyraclostrobin 250 g/L)	Foliar	100–200	_		3 (10)	14
	Chile	SC 250 g/L (pyraclostrobin 250 g/L)	Foliar	75	-	800– 1500	2 (14), do not apply after flowering	_
Strawberries	USA	EC 62.5 g/L	Foliar	75–200	-		3 (7)	0
	USA	SC 300 g/L	Foliar	75–199	-		3 (7)	0
	USA	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	73–107	_		3 (7)	0
	USA	SC 250 g/L (pyraclostrobin 250 g/L)	Foliar	73–200	_		3 (7)	0
	Mexico	SC 250 g/L (pyraclostrobin 250 g/L)	Foliar	75–125	-	400–500	3 (7)	1
	Mexico	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	50-84	-	400–500	3 (7)	1
Assorted tropical and subtropical Fruits— inedible peel								
Banana	Belize	SC 300 g/L	Foliar (ground or aerial)	90–150 + 7– 9 L/ha agricultural oil			4 (8)	0
	Colombia	SC 300 g/L	Foliar (ground or aerial)	150 + 7–9 L/ha agricultural oil		18–23 (aerial), 50–60 (ground)	3 (12)	0
	Costa Rica	SC 300 g/L	Foliar (ground or	90–150 + 7– 9 L/ha			4 (8)	0

Crop	Country	Application						
		Formulation	Туре	Rate, g ai/ha	Conc.	Spray	No. (RTI,	PHI,
					(g	volume	days)	days
					ai/hL)	(L/ha)		
			aerial)	agricultural oil				
	Dominican	SC 300 g/L	Foliar	90-150+7-			4 (8)	0
	Republic		(ground or	9 L/ha				
	Emailen	SC 200 -/I	aerial)	agricultural oil		10.02		1
	Ecuador	SC 300 g/L	Foliar	150		18-23		1
			(ground or					
	Fl	SC 300 g/L	Foliar	90-150 + 7-			4 (8)	0
	Salvador	5C 500 g/L	(ground or	9 L/ha			4 (0)	Ŭ
	Surviuor		aerial)	agricultural oil				
	Guatemala	SC 300 g/L	Foliar	90-150 + 7-			4 (8)	0
			(ground or	9 L/ha			(-)	-
			aerial)	agricultural oil				
	Honduras	SC 300 g/L	Foliar	90-150 + 7-			4 (8)	0
			(ground or	9 L/ha				
			aerial)	agricultural oil				
	Panama	SC 300 g/L	Foliar	90-150 + 7-			4 (8)	0
			(ground or	9 L/ha				
	D ''	00167 7	aerial)	agricultural oil	10.5-	500	4.(7)	-
Mango	Brazil	SC 167 g/L	Foliar		4.2–6.7	500-	4 (7)	1
		(pyraclostrobin				1000		
Panava	Mavico	555 g/L)	Folior	75 100		400	2(14)	7
гарауа	WIEXICO	SC 250 g/L	Folial	/3-100		400	2 (14)	/
		(pyraciositobili 250 g/L)						
Bulb		250 g/L)						
vegetables								
Bulb	USA	SC 62.5 g/L	Foliar	75-200			3(7)	7
vegetables		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					- (.)	-
	USA	SC 300 g/L	Foliar	75-200			3 (7)	7
	USA	SC 167 g/L	Foliar	73–90			3 (7)	7
		(pyraclostrobin						
		333 g/L)						
	USA	SC 250 g/L	Foliar	73–200			3 (7)	7
		(pyraclostrobin						
		250 g/L)						
Garlic	USA	FS 333 g/L	Seed	20-			1	-
			treatment	40 g ai/100 kg				
	LICA	EC 222 -/I	C 1	seed			1	
	USA	FS 555 g/L	Seed	125- 250 g pi/100 kg			1	-
			ucament	seed				
	USA	ES 250 o/L	Seed	33_			1	_
		(pyraclostrobin	treatment	40 g ai/100 kg			1	
		250 g/L)		seed				
Leek	USA	FS 333 g/L	Seed	20-			1	_
		Ŭ	treatment	40 g ai/100 kg				
				seed				
	USA	FS 333 g/L	Seed	125-			1	-
			treatment	250 g ai/100 kg				
				seed				
	USA	FS 250 g/L	Seed	33-			1	-
		(pyraclostrobin	treatment	40 g a1/100 kg				
Onices (11)		230 g/L)	Coo ¹	seed			1	
Unions (all)	USA	гэ эээ g/L	Seed	20-			1	-
			uvatinelli	+0 g al/100 Kg				
	USA	ES 333 o/L	Seed	125-			1	_
		10 000 8/1	treatment	250 g ai/100 kg				
				seed				
	USA	FS 250 g/L	Seed	33-			1	_
						•		

Crop	Country	Application						
		Formulation	Туре	Rate, g ai/ha	Conc. (g ai/hL)	Spray volume (L/ha)	No. (RTI, days)	PHI, days
		(pyraclostrobin 250 g/L)	treatment	40 g ai/100 kg seed				
Onion	Brazil	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	42–58		200– 1000	4 (7)	7
	Dominican Republic	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	42–58			3 (7)	7
	El Salvador	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	50–58			3 (7)	7
	Guatemala	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	42–58			3 (7)	7
Shallots	USA	FS 333 g/L	Seed treatment	20– 40 g ai/100 kg seed			1	_
	USA	FS 333 g/L	Seed treatment	125– 250 g ai/100 kg seed			1	_
	USA	FS 250 g/L (pyraclostrobin 250 g/L)	Seed treatment	33– 40 g ai/100 kg seed			1	_
Brassica vegetables								
Brassica vegetables	USA	EC 62.5 g/L	Foliar	75–100			3 (7)	3
	USA	SC 300 g/L	Foliar	75-100			3 (7)	3
	USA	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	73–100			3 (7)	3
	USA	SC 250 g/L (pyraclostrobin 250 g/L)	Foliar	73–100			3 (7)	3
	USA	FS 333 g/L	Seed treatment	20– 40 g ai/100 kg seed			1	_
	USA	FS 250 g/L (pyraclostrobin 250 g/L)	Seed treatment	33– 40 g ai/100 kg seed			1	_
Fruiting vegetables, Cucurbits								
Cucurbits	USA	EC 62.5 g/L	Foliar	75–100			3 (7)	0
	USA	SC 300 g/L	Foliar	75–100			3 (7)	0
	USA	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	73–100			3 (7)	0
	USA	SC 250 g/L (pyraclostrobin 250 g/L)	Foliar	73–100			3 (7)	0
	USA	FS 333 g/L	Seed treatment	20– 40 g ai/100 kg seed			1	_
	USA		Seed treatment	30 g ai/100 kg seed			1	—
Cucumbers	Brazil	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	42–58		400– 1000	4 (7)	7
	Mexico	SC 250 g/L (pyraclostrobin	Foliar	62.5-100			4 (4)	1

Crop	Country	Application						
· · · ·		Formulation	Туре	Rate, g ai/ha	Conc.	Spray	No. (RTI,	PHI,
			51		(g	volume	days)	days
					ai/hL)	(L/ha)		-
		250 g/L)						
Melons	Brazil	SC 167 g/L	Foliar	42–58		400-	4 (7)	7
		(pyraclostrobin				1000		
		333 g/L)						
	Mexico	SC 250 g/L	Foliar	62.5–100			4 (4)	1
		(pyraclostrobin						
		250 g/L)		10.50				_
	Dominican	SC 167 g/L	Foliar	42–58			3 (7)	1
	Republic	(pyraclostrobin						
	Customala	555 g/L)	E-line	40.59			2 (7)	7
	Guatemala	SC 10/ g/L	Foliar	42-38			5(7)	/
		(pyraciositobili)						
	Honduras	SC 167 g/I	Foliar	42_58			3 (7)	7
	Hondulas	(pyraclostrobin	1 Onai	42-50			5(7)	/
		333 g/L)						
	Trinidad	SC 167 g/L	Foliar	42–58			3 (7)	7
	and	(pyraclostrobin						
	Tobago	333 g/L)						
Pumpkins	Mexico	SC 250 g/L	Foliar	62.5-100			4 (4)	1
-		(pyraclostrobin						
		250 g/L)						
Watermelons	Mexico	SC 250 g/L	Foliar	62.5–100			4 (4)	1
		(pyraclostrobin						
		250 g/L)						
	Dominican	SC 167 g/L	Foliar	42–58			3 (7)	7
	Republic	(pyraclostrobin						
		333 g/L)	E 1'	10 50			2 (7)	7
	Guatemala	SC 16/ g/L	Foliar	42-58			3(7)	/
		$(pyraclostrobin 222 \alpha I)$						
	Honduras	555 g/L)	Foliar	12 59			2 (7)	7
	Holidulas	(pyraclostrobin	Folial	42-30			5(7)	/
		(pyraciositobili 333 g/L)						
Zucchini	Mexico	SC 250 g/L	Foliar	62.5-100			4 (4)	1
Zucennin	Menteo	(pyraclostrobin	1 onu	02.0 100			. (.)	1
		250 g/L)						
Leafy								
vegetables								
Brassica	USA	EC 62.5 g/L	Foliar	75–100			3 (7)	3
leafy								
vegetables								
	USA	SC 300 g/L	Foliar	75–100			3 (7)	3
	USA	SC 167 g/L	Foliar	75–100			3 (7)	3
		(pyraclostrobin						
		555 g/L)	T 1'	75 100			2 (7)	2
	USA	SC 250 g/L	Foliar	/5-100			5(/)	5
		(pyraclostrobin 250 g/L)						
	USA	ES 333 g/I	Seed	20_			1	
	USA	10 333 8/L	treatment	40 g ai/100 kg			1	
			acathellt	seed				
	USA	FS 250 g/L	Seed	33–			1	_
		(pyraclostrobin	treatment	40 g ai/100 kg				
		250 g/L)		seed				
Leafy	USA	EC 62.5 g/L	Foliar	75-200			3 (7)	1
vegetables								
(except								
Brassica								
leaty								
vegetables)								

Crop	Country	Application						
		Formulation	Туре	Rate, g ai/ha	Conc. (g	Spray volume	No. (RTI, days)	PHI, days
	LIC A		E 1'	75.000	aı/hL)	(L/ha)	2 (7)	1
	USA	SC 300 g/L	Foliar	75-200			3(7)	1
	USA	(pyraclostrobin 333 g/L)	Foliar	/3-112			3(7)	1
	USA	SC 250 g/L (pyraclostrobin 250 g/L)	Foliar	73–200			3 (7)	1
	USA	FS 333 g/L	Seed treatment	20– 40 g ai/100 kg seed			1	_
	USA	FS 333 g/L	Seed treatment	100– 200 g ai/100 kg seed			1	—
	USA	FS 250 g/L (pyraclostrobin 250 g/L)	Seed treatment	30 g ai/100 kg seed			1	_
Root and								
tuber								
Vegetables	Descrit	SC 167 -/T	Faliar	22 59		400 500	4 (7)	2
Potatoes	Brazil	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	33-38		400–500	4 (7)	3
Potatoes	Canada	EC 62.5 g/L	Foliar	50-100			3 (7)	7
	Canada	SC 300 g/L	Foliar	50-100			3 (7)	7
Potatoes	Canada	EC 62.5 g/L	In-furrow	100			1	-
	Canada	SC 300 g/L	In-furrow	100			1	_
	USA	EC 62.5 g/L	In-furrow	100			1	-
	USA	SC 300 g/L	In-furrow	100			1	-
	USA	SC 167 g/L (pyraclostrobin 333 g/L)	In-furrow	100			1	_
	USA	SC 250 g/L (pyraclostrobin 250 g/L)	In-furrow	100			1	_
Potatoes	Mexico	SC 250 g/L (pyraclostrobin 250 g/L)	Foliar	50-150		400–500	2 (7)	7
	Mexico	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	33–50		400–500	2 (7)	7
	Mexico	SC 250 g/L (pyraclostrobin 250 g/L)	In-furrow	425–500		600–700	1	_
	Mexico	SC 167 g/L (pyraclostrobin 333 g/L)	In-furrow	250-330		600–700	1	-
Potatoes	Dominican Republic	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	42–58			3 (7)	7
Potatoes	Guatemala	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	42–58			3 (7)	7
Potatoes	Honduras	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	42–58			3 (7)	7
Potatoes	Trinidad and Tobago	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	42–58			3 (7)	7
Carrots	Brazil	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	42–58		400–700	4 (7)	7

Crop	Country	Application						
1		Formulation	Type	Rate, g ai/ha	Conc.	Spray	No. (RTI,	PHI,
			51	, 0	(g	volume	days)	days
					ai/hL)	(L/ha)		5
	Dominican	SC 167 g/L	Foliar	42–58			3 (7)	7
	Republic	(pyraclostrobin						
		333 g/L)						
	Guatemala	SC 167 g/L	Foliar	42–58			3 (7)	7
		(pyraclostrobin						
		333 g/L)						
Chinese	Canada	EC 62.5 g/L	Foliar	50-100			3 (7)	7
artichokes								
	Canada	SC 300 g/L	Foliar	50-100			3 (7)	7
Jerusalem	Canada	EC 62.5 g/L	Foliar	50-100			3 (7)	7
artichokes								_
	Canada	SC 300 g/L	Foliar	50-100			3 (7)	7
Chufa	Canada	EC 62.5 g/L	Foliar	50-100			3(7)	7
~	Canada	SC 300 g/L	Foliar	50-100			3(7)	7
Sweet	Canada	EC 62.5 g/L	Foliar	50-100			3(7)	7
potatoes		RC 200 J	E 1'	50, 100			2 (7)	7
	Canada	SC 300 g/L	Foliar	50-100			3(/)	/
True yams	Canada	EC 62.5 g/L	Foliar	50-100			5(/)	/
G 1	Canada	SC 300 g/L	Foliar	50-100			3(7)	7
Sugar beets	Canada	EC 62.5 g/L	Foliar	100			3(7)	-7
~	Canada	SC 300 g/L	Foliar	100			3 (7)	7
Sugar beets	Canada	EC 62.5 g/L	In-furrow	100			1	—
	Canada	SC 300 g/L	In-furrow	100			1	-
Root and	USA	EC 62.5 g/L	Foliar	75–100			3 (7)	7
tuber								
vegetables								
(except								
sugar beets)	TIC A	RC 200 J	E 1'	75 100			2 (7)	7
	USA	SC 300 g/L	Foliar	/5-100			3(7)	/
	USA	SC 16/ g/L	Foliar	73-100			3 (7)	1
		(pyraclostrobin						
	TICA	555 g/L)	0 1	20			1	
	USA	FS 333 g/L	Seed	20-			1	_
			treatment	40 g al/100 kg				
Sugar baata	LICA	EC 62.5 c/l	Foliar	50 100			2 (7)	7
Sugar Deets	USA	EC 02.5 g/L	Foliar	50 100			3(7)	7
	USA	SC 500 g/L	Foliar	<u> </u>			3(7)	7
	USA	SU 10/ g/L	ronar	/ 3-100			S(7), OF 4	/
							lower rate	
Ginger	LISA	555 g/L)	Foliar	50 100			3(7)	7
Ulliger	USA	SC 300 ~/I	Foliar	50 100			3(7)	7
		SC 300 g/L	Foliar	50 100			3(7)	7
		1 3C 10/ 2/L					1 11/1	/
		(nuraclostrobin	Tonai	30-100			5(1)	
		(pyraclostrobin	Tona	30-100			5(1)	
		(pyraclostrobin 333 g/L)	Foliar	55 100			3 (7)	7
		(pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin	Foliar	55-100			3 (7)	7
		(pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L)	Foliar	55-100			3 (7)	7
Turmeric	USA	(pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L) EC 62 5 g/I	Foliar	55-100			3 (7)	7
Turmeric	USA	(pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L) EC 62.5 g/L SC 300 g/L	Foliar Foliar	55-100 50-100 50-100			3 (7) 3 (7) 3 (7)	7 7 7 7
Turmeric	USA	(pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L) EC 62.5 g/L SC 300 g/L	Foliar Foliar Foliar	55-100 50-100 50-100 50-100			3 (7) 3 (7) 3 (7) 3 (7)	7 7 7 7
Turmeric	USA	(pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L) EC 62.5 g/L SC 300 g/L SC 167 g/L (pyraclostrobin	Foliar Foliar Foliar Foliar	55–100 55–100 50–100 50–100 50–100			3 (7) 3 (7) 3 (7) 3 (7) 3 (7)	7 7 7 7 7
Turmeric	USA	(pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L) EC 62.5 g/L SC 300 g/L SC 167 g/L (pyraclostrobin 333 g/L)	Foliar Foliar Foliar Foliar	50-100 55-100 50-100 50-100 50-100			3 (7) 3 (7) 3 (7) 3 (7) 3 (7)	7 7 7 7 7
Turmeric	USA	(pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L) EC 62.5 g/L SC 300 g/L SC 167 g/L (pyraclostrobin 333 g/L) SC 250 g/L	Foliar Foliar Foliar Foliar	55–100 55–100 50–100 50–100 50–100			3 (7) 3 (7) 3 (7) 3 (7) 3 (7) 3 (7)	7 7 7 7 7
Turmeric	USA	(pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L) EC 62.5 g/L SC 300 g/L SC 167 g/L (pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin	Foliar Foliar Foliar Foliar Foliar	50-100 55-100 50-100 50-100 50-100 50-100 55-100			3 (7) 3 (7) 3 (7) 3 (7) 3 (7) 3 (7)	7 7 7 7 7 7
Turmeric	USA	(pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L) EC 62.5 g/L SC 300 g/L SC 167 g/L (pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L)	Foliar Foliar Foliar Foliar Foliar	50-100 55-100 50-100 50-100 50-100 50-100 55-100			3 (7) 3 (7) 3 (7) 3 (7) 3 (7) 3 (7)	7 7 7 7 7
Turmeric Stalk and	USA	(pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L) EC 62.5 g/L SC 300 g/L SC 167 g/L (pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L)	Foliar Foliar Foliar Foliar	50-100 55-100 50-100 50-100 50-100 50-100			3 (7) 3 (7) 3 (7) 3 (7) 3 (7) 3 (7)	7 7 7 7 7
Turmeric Stalk and stem	USA	(pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L) EC 62.5 g/L SC 300 g/L SC 167 g/L (pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L)	Foliar Foliar Foliar Foliar	50-100 55-100 50-100 50-100 50-100 50-100			3 (7) 3 (7) 3 (7) 3 (7) 3 (7) 3 (7)	7 7 7 7 7
Turmeric Stalk and stem vegetables	USA	(pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L) EC 62.5 g/L SC 300 g/L SC 167 g/L (pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L)	Foliar Foliar Foliar Foliar	50-100 55-100 50-100 50-100 50-100 55-100			3 (7) 3 (7) 3 (7) 3 (7) 3 (7) 3 (7)	7 7 7 7 7
Turmeric Stalk and stem vegetables Celery	USA	(pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L) EC 62.5 g/L SC 300 g/L SC 167 g/L (pyraclostrobin 333 g/L) SC 250 g/L (pyraclostrobin 250 g/L) EC 62.5 g/L	Foliar Foliar Foliar Foliar Foliar	55–100 55–100 50–100 50–100 55–100 75–200			3 (7) 3 (7) 3 (7) 3 (7) 3 (7) 3 (7) 3 (7)	7 7 7 7 7 7 1

Crop	Country	Application						
		Formulation	Туре	Rate, g ai/ha	Conc.	Spray	No. (RTI,	PHI,
					(g	volume	days)	days
					ai/hL)	(L/ha)		
	USA	SC 300 g/L	Foliar	75–200			3 (7)	1
	USA	SC 167 g/L	Foliar	73–112			3 (7)	1
		(pyraclostrobin						
		333 g/L)						
	USA	SC 250 g/L	Foliar	73-200			3 (7)	1
		(pyraclostrobin						
	TICA	250 g/L)	Saad	20			1	
	USA	FS 555 g/L	Seed	20-			1	_
			treatment	40 g al/100 kg				
	USA	FS 333 g/I	Seed	100_			1	_
	0.571	10 333 812	treatment	$200 \sigma ai/100 k\sigma$			1	
			deathent	seed				
-	USA	FS 250 g/L	Seed	30 g ai/100 kg			1	_
		(pyraclostrobin	treatment	seed				
		250 g/L)						
Cereal grains								
Rice	USA	EC 62.5 g/L	Foliar	75–150			2 (7)	28
	USA	SC 300 g/L	Foliar	100-150			2 (7)	28
	USA	FS 333 g/L	Seed	25-			1	_
			treatment	50 g ai/100 kg				
				seed				
	Cuba	EC 62.5 g/L	Foliar	47–78			2 (25)	35
		(epoxiconazole						
		62.5 g/L)						
	Dominican	EC 62.5 g/L	Foliar	62.5–75			2 (25)	35
	Republic	(epoxiconazole						
	El	02.3 g/L)	Falian	62 5 75			2 (25)	25
	Salvador	EC 02.5 g/L	Folial	02.3-73			2 (23)	35
	Sarvador	(cpoxicoliazoic) 62.5 g/L)						
	Guatemala	EC 62.5 g/L	Foliar	62.5-75			2 (25)	35
	Guatemaia	(epoxiconazole	1 onu	02.0 70			2 (23)	55
		62.5 g/L)						
-	Honduras	EC 62.5 g/L	Foliar	62.5–75			2 (25)	35
		(epoxiconazole						
		62.5 g/L)						
Sorghum	USA	EC 62.5 g/L	Foliar	75–100			2	21
	USA	SC 300 g/L	Foliar	75–100			2	21
	USA	SC 167 g/L	Foliar	50-100			1	21
		(pyraclostrobin						
		333 g/L)						
	USA	FS 333 g/L	Seed	10-			1	-
			treatment	20 g a1/100 kg				
<u> </u>	LISA	ES 207 ~/I	Sood	seeu 10			1	
	USA	FS 527 g/L	treatment	10- 20 g ai/100 kg			1	_
			ueatment	20 g al/100 kg				
<u> </u>	Mexico	SC 250 g/L	Foliar	50-100		550-650	2 (14)	10
	intenie o	(pyraclostrobin	1 onu	50 100		220 020	2(11)	10
		250 g/L)						
	Mexico	SC 167 g/L	Foliar	50-67	ĺ	200-300	2 (14)	10
		(pyraclostrobin						
		333 g/L)		<u> </u>				
	Brazil	SC 167 g/L	Foliar	42–58		150-200	2 (14)	30
		(pyraclostrobin						
		333 g/L)						
Grasses for								
sugar or								
syrup								
Production					I			

Crop	Country	Application						
		Formulation	Туре	Rate, g ai/ha	Conc. (g	Spray volume	No. (RTI, days)	PHI, days
					ai/hL)	(L/ha)		5
Sugar cane	USA	EC 62.5 g/L	Foliar	75–125			2 (14)	14
	USA	SC 300 g/L	Foliar	125			2 (14)	14
	USA	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	50-110			2 (14)	14
	Brazil	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	50–67		150–200	5 (21)	30
Tree nuts								
Tree nuts	USA	EC 62.5 g/L	Foliar	75–125			3 (7)	14
	USA	SC 300 g/L	Foliar	75–125			3 (7)	14
	USA	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	67			3 (7)	14
	USA	SC 250 g/L (pyraclostrobin 250 g/L)	Foliar	91–119			3 (7)	14
Oilseeds								
Cotton	USA	FS 333 g/L	Seed treatment	10– 20 g ai/100 kg seed			1	_
	USA	FS 327 g/L	Seed treatment	10– 20 g ai/100 kg seed			1	_
	USA	FS 250 g/L (pyraclostrobin 250 g/L)	Seed treatment	20 g ai/100 kg seed			1	_
	USA	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	50-100			2 (7)	21
	USA	SC 250 g/L (pyraclostrobin 250 g/L)	Foliar	73–100			2 (7)	21
	USA	SC 167 g/L (pyraclostrobin 333 g/L)	In- furrow/soil directed banded spray	0.16–1 g ai/100 row metres			1	_
	USA	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	50-100			3 (7)	30
	USA	SC 300 g/L	Foliar	50-100			3 (7)	30
	USA	EC 62.5 g/L	Foliar	50-100			3 (7)	30
	Brazil	SC 167 g/L (pyraclostrobin 333 g/L)	Foliar	42–58		150-200	4 (12)	14

RESIDUES RESULTING FROM SUPERVISED TRIALS ON CROPS

The Meeting received supervised trials for use of fluxapyroxad on citrus fruit (oranges, lemons and limes), cherries, berries and small fruits (grapes, blueberries, blackberries, raspberries and strawberries), tropical fruit, inedible peel (banana, papaya and mango), bulb vegetables (onion, bulb and green onion), Brassica vegetables (cabbage and broccoli), fruiting vegetables, cucurbits (cucumber, summer squash, melon (cantaloupe), and watermelon), leafy vegetables (head lettuce, leafy lettuce, spinach and mustard greens), root and tuber vegetables (carrots, radish and potato), celery, rice, sugar cane, tree nuts (almonds and pecans), and cotton.

Residue data for stone fruit, potatoes, sugar beet, and sorghum evaluated by the 2012 Meeting are also tabulated below. The data tables have been taken unaltered from the 2012 evaluation. These data were evaluated against registered uses for these crops submitted to the current Meeting.

In all trials, residues were determined using method L0137/01. The method LOQ was 0.01 mg/kg for each analyte as measured, or 0.01, 0.02, 0.01 and 0.01 mg/kg as parent equivalents for parent, M700F002, M700F008, and M700F048 respectively. For replicate samples from the same plot, the mean value was used for maximum residue level estimation, with the individual results being given in brackets. All residues below the LOQ are reported as < the appropriate LOQ value, as parent equivalents. For multiple trials from the same location in the same year, results from the trial yielding the highest residue were used for estimation of maximum residue levels and dietary intake assessment.

For dietary intake assessment, the residues are expressed as the sum of fluxapyroxad, M700F008, and M700F048, expressed as fluxapyroxad (total residues). Residues of the metabolites are reported as parent equivalents.

Group	Commodity	Countries	Table
FC Citrus fruits	Orange	Brazil, Argentina	2, 3
	Lemon	Argentina	4
	Lime	Brazil	5
FS Stone fruits	Cherry	USA, Canada	6
	Peach	USA, Canada	7
	Plum	USA, Canada	8
FB Berries and other small fruits	Blueberries	USA	9
	Caneberries (blackberries, raspberries)	USA	10
	Grapes	USA	11
	Strawberries	USA	12
FI Assorted tropical and sub-tropical fruits— inedible peel	Banana	Brazil, Colombia, Costa Rica, Ecuador	13, 14
	Mango	Brazil	15
	Papaya	Brazil	16
VA Bulb vegetables	Onion, bulb	USA	17
	Onion, green	USA	18
VB Brassica vegetables	Broccoli	USA	19
	Cabbage	USA	20
VC Fruiting vegetables, Cucurbits	Melons	USA, Brazil	21, 22
	Cucumber	USA	23
	Squash, summer	USA	24
	Watermelon	Brazil	25
VL Leafy vegetables	Lettuce, Head	USA	26

Group	Commodity	Countries	Table
	Lettuce, Leaf	USA	27
	Mustard greens	USA	28
	Radish leaves	USA	29
	Spinach	USA	30
VR Root and tuber vegetables	Carrot	USA	31, 32
	Potato	Germany, UK, the Netherlands, Belgium, France, Greece, Italy, Spain, USA, Canada	33, 34, 35
	Radish	USA	36
	Sugar beet	USA, Canada	37
VS Stalk and stem vegetables	Celery	USA	38
GC Cereal grains	Rice	USA	39
	Sorghum	USA	40
GS Grasses for sugar or syrup production	Sugar cane	USA	41
TN Tree nuts	Almonds	USA	42
	Pecans	USA	43
SO Oilseed	Cotton	USA	44
Animal feeds	Rice straw	USA	45
	Sorghum forage and stover	USA	46
	Almond hulls	USA	47
	Cotton gin by-products	USA	48

Citrus fruits

Residue trials in <u>oranges</u>, <u>lemons</u> and <u>limes</u> were conducted in Brazil and Argentina (Dantas *et al.*, 2012 and Guimaraes, 2014-a). Three foliar applications of an SC formulation containing 167 g/L fluxapyroxad and 333 g/L pyraclostrobin were made at each site using an airblast sprayer.

Table 2 Residues of fluxapyroxad and metabolites in oranges (whole fruit)

Location, Year (variety)	Applicatio n				Residues, mg/kg parent equivalents				
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a
San Antonio de Posse, Sao Paolo, Brazil, 2010 (Pera Coroa)	3 (28, 28)	50, 50, 50	2000, 2000, 2000	0	0.15	< 0.02	< 0.01	< 0.01	0.15
				7	0.14	< 0.02	< 0.01	< 0.01	0.14
				14	0.14	< 0.02	< 0.01	< 0.01	0.14

Location, Year (variety)	Applicatio n				Residues, mg/kg parent equivalents				
((unot))	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a
				21	0.16	< 0.02	< 0.01	< 0.01	0.16
				28	0.15	< 0.02	< 0.01	< 0.01	0.15
San Antonio de Posse, Sao Paolo, Brazil, 2010 (Natal)	3 (28, 28)	50, 50, 50	2000, 2000, 2000	0	0.09	< 0.02	< 0.01	< 0.01	0.09
				7	0.12	< 0.02	< 0.01	< 0.01	0.12
				14	0.17	< 0.02	< 0.01	< 0.01	0.17
				21	0.11	< 0.02	< 0.01	< 0.01	0.11
				28	0.10	< 0.02	< 0.01	< 0.01	0.10
Jaboticabal , Sao Paolo, Brazil, 2010 (Pera)	3 (28, 23)	50, 50, 50	2000, 2000, 2000	14	0.14	< 0.02	< 0.01	< 0.01	0.14
Londrina, Parana, Brazil, 2010 (Pera Rio)	3 (28, 28)	50, 50, 50	2000, 2000, 2000	14	0.06	< 0.02	< 0.01	< 0.01	0.06
San Antonio de Posse, Sao Paolo, Brazil, 2013 (Pera Coroa)	3 (29, 27)	50, 50, 50	2000, 2000, 2000	0	0.17	< 0.02	< 0.01	< 0.01	0.17
				7	0.16	< 0.02	< 0.01	< 0.01	0.16
				14	0.12	< 0.02	< 0.01	< 0.01	0.12
				21	0.14	< 0.02	< 0.01	< 0.01	0.14
				28	0.10	< 0.02	< 0.01	< 0.01	0.10
Aguai, Sao Paolo, Brazil, 2013 (Pera Murcha)	3 (28, 28)	50, 50, 50	2000, 2000, 2000	0	0.06	< 0.02	< 0.01	< 0.01	0.06
				7	0.07	< 0.02	< 0.01	< 0.01	0.07
				14	0.04	< 0.02	< 0.01	< 0.01	0.04
				21	0.04	< 0.02	< 0.01	< 0.01	0.04
				28	0.02	< 0.02	< 0.01	< 0.01	0.02
Mogi Mirim, Sao Paolo, Brazil, 2013 (Pera Coroa)	3 (28, 28)	50, 50, 50	2000, 2000, 2000	0	0.07	< 0.02	< 0.01	< 0.01	0.07
				7	0.06	< 0.02	< 0.01	< 0.01	0.06
				14	0.03	< 0.02	< 0.01	< 0.01	0.03
				21	0.05	< 0.02	< 0.01	< 0.01	0.05

Location, Year (variety)	Applicatio n				Residues, mg/ equivalents	/kg parent			
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a
				28	0.05	< 0.02	< 0.01	< 0.01	0.05
Londrina, Parana, Brazil, 2013 (Pera Rio)	3 (28, 28)	50, 50, 50	2000, 2000, 2000	0	0.06	< 0.02	< 0.01	< 0.01	0.06
				7	0.03	< 0.02	< 0.01	< 0.01	0.03
				14	0.01	< 0.02	< 0.01	< 0.01	0.01
				21	0.02	< 0.02	< 0.01	< 0.01	0.02
				28	0.03	< 0.02	< 0.01	< 0.01	0.03

Method LODs were for 0.002, 0.005, 0.002, and 0.001 mg/kg for fluxapyroxad, M700F002, M700F008 and M700F048 respectively, while the LOQs were 0.01, 0.025, 0.01, and 0.005 mg/kg (all values in parent equivalents)

No residues were detected in the untreated control samples

 $^{\rm a}$ Sum of flux apyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as flux apyroxad

Table 3 Residues	of fluxapyroxad	and metabolites in	n orange whole	fruit, peel and	pulp ^b
			0	/	

Location, Year (variety)	Applicatio n				Fractio n	Residues, mg/ parent equival	kg ents			
	No. (RTI, days)	Rate, g ai/h a	Spray volume (L/ha)	DALA		Fluxapyroxa d	M700 F002	M700 F008	M70 0 F048	Total ^a
Concordia, Entre Rios, Argentina, 2013 (Valencia)	3 (28, 28)	50, 50, 50	2000, 2000, 2000	14	Whole fruit	0.06	< 0.0 2	< 0.0 1	< 0.0 1	0.06
				14	Peel	0.31	< 0.0 2	< 0.0 1	< 0.0 1	0.31
				14	Pulp	< 0.01	< 0.0 2	< 0.0 1	< 0.0 1	< 0.0 1
Federacion , Entre Rios, Argentina, 2013 (Valencia)	3 (28, 28)	50, 50, 50	2000, 2000, 2000	14	Whole fruit	0.16	< 0.0 2	< 0.0 1	< 0.0 1	0.16
				14	Peel	0.17	< 0.0 2	< 0.0 1	< 0.0 1	0.17
				14	Pulp	< 0.01	< 0.0 2	< 0.0 1	< 0.0 1	< 0.0 1
Jaguapita, Sao Paolo, Brazil, 2013 (Parana)	3 (28, 28)	50, 50, 50	2000, 2000, 2000	14	Whole fruit	0.05	< 0.0 2	< 0.0 1	< 0.0 1	0.05
				14	Peel	0.35	< 0.0 2	< 0.0 1	< 0.0 1	0.35
				14	Pulp	< 0.01	< 0.0 2	< 0.0 1	< 0.0 1	< 0.0 1
Cambe, Parana, Brazil, 2013	3 (28, 28)	50, 50, 50	2000, 2000, 2000	14	Whole fruit	0.07	< 0.0 2	< 0.0 1	< 0.0 1	0.07

Location, Year (variety)	Applicatio n				Fractio n	Residues, mg/kg parent equivalents				
	No. (RTI,	Rate, g ai/h	Spray	DALA		Fluxapyroxa	M700	M700	M70	Total
	days)	а	volume			d	F002	F008	0	а
			(L/ha)						F048	
(Valencia)										
				14	Peel	0.11	< 0.0	< 0.0	< 0.0	0.11
							2	1	1	
				14	Pulp	< 0.01	< 0.0	< 0.0	< 0.0	< 0.0
							2	1	1	1

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

^b Residues in whole fruit were determined by analyses of separate sub-samples, not by summing the residues in peel and pulp after adjusting for the mass fraction of each portion. Hence, residues in whole fruit may not correspond with the values expected based on typical proportions of peel and pulp in oranges.

Location, Year (variety)	Applicatio n				Fractio n	Residues, mg/kg parent equivalents				
	No. (RTI, days)	Rate, g ai/h a	Spray volume (L/ha)	DALA		Fluxapyroxa d	M700 F002	M700 F008	M70 0 F048	Total ^a
Concordia, Entre Rios, Argentina, 2013 (Eureka)	3 (28, 28)	50, 50, 50	2000, 2000, 2000	14	Whole fruit	0.13	< 0.0 2	< 0.0 1	< 0.0 1	0.13
				14	Peel	0.20	< 0.0 2	< 0.0 1	< 0.0 1	0.20
				14	Pulp	< 0.01	< 0.0 2	< 0.0 1	< 0.0 1	< 0.0 1
Federacion , Entre Rios, Argentina, 2013 (Eureka)	3 (28, 28)	50, 50, 50	2000, 2000, 2000	14	Whole fruit	0.09	< 0.0 2	< 0.0 1	< 0.0 1	0.09
				14	Peel	0.32	< 0.0 2	< 0.0 1	< 0.0 1	0.32
				14	Pulp	< 0.01	< 0.0 2	< 0.0 1	< 0.0 1	< 0.0 1

Table 4 Residues of fluxapyroxad and metabolites in lemon	whole fruit, peel and pulp ^b
---	---

No residues were detected in the untreated control samples

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

^b Residues in whole fruit were determined by analyses of separate sub-samples, not by summing the residues in peel and pulp after adjusting for the mass fraction of each portion. Hence, residues in whole fruit may not correspond with the values expected based on typical proportions of peel and pulp in lemons.

Table 5 Residues of fluxap	yroxad and metabolite	s in limes	(whole fruit)
----------------------------	-----------------------	------------	---------------

Location, Year (variety)	Applicatio n				Residues, mg/kg parent equivalents				
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a

Location, Year (variety)	Applicatio n				Residues, mg/kg parent equivalents				
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a
Estrela do Sul, Minas Gerais, Brazil, 2013 (Tahitian)	3 (29, 27)	50, 50, 50	2000, 2000, 2000	0	0.05	< 0.02	< 0.01	< 0.01	0.05
				7	0.06	< 0.02	< 0.01	< 0.01	0.06
				14	0.04	< 0.02	< 0.01	< 0.01	0.04
				21	0.02	< 0.02	< 0.01	< 0.01	0.02
				28	0.02	< 0.02	< 0.01	< 0.01	0.02
Jaitaizinho , Parana, Brazil, 2013 (Tahitian)	3 (28, 28)	50, 50, 50	2000, 2000, 2000	0	0.10	< 0.02	< 0.01	< 0.01	0.10
				7	0.06	< 0.02	< 0.01	< 0.01	0.06
				14	0.06	< 0.02	< 0.01	< 0.01	0.06
				21	0.05	< 0.02	< 0.01	< 0.01	0.05
				28	0.03	< 0.02	< 0.01	< 0.01	0.03

 $^{\rm a}$ Sum of flux apyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as flux apyroxad

Stone fruits

Residue data from trials in cherries, peaches and plums considered by the 2012 Meeting are tabulated below.

Table 6 Residues from the foliar application of fluxapyroxad to cherries in the USA and Canada (Jordan 2010, 2009/7003328 and Schreier 2012, 2011/7004953)

Study No.	Ap	plication	L		Matrix	PHI	Residues (mg/	′kg)			
Trial No. Country Year (Variety)	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxapyroxad	M700F002	M700F008	M700F048	Total ^a
GAP, USA	3		121- 123			0					
2009/7003328	3	6	121	679	Fruit	0	1.05	< LOD	0.21	0.05	1.31
RCN R080182		6	128	716	716 712	1	1.10	< LOD	0.24	0.04	1.38
USA (Allegan,			378	/12		7	0.32	< LOD	0.25	0.07	0.63
Michigan)						14	0.09	< LOD	0.18	0.07	0.33
2008 (Tort	3	3 6 119	119	1455	Fruit (0	0.86	< LOD	0.25	0.05	1.16
(Tart- Montmorency)		6	128	1540		1	0.78	< LOD	0.25	0.06	1.08
5,			376	1352		7	0.32	< LOD	0.23	0.09	0.62
						14	0.12	< LOD	0.16	0.10	0.36
2009/7003328	3	8	127	610	Fruit	0	0.43	< LOD	0.17	< 0.01	0.61
RCN R080183 Canada	5	6	125 126	599 608		1	(0.58, 0.52) 0.55	< LOD	0.16	< 0.01	0.72
(magara,			5/8			7	(0.31, 0.48)	< LOD	0.19	0.01	0.61

Study No.	Ap	plication			Matrix	PHI	Residues (mg/	′kg)			
Trial No. Country Year (Variety)	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxapyroxad	M700F002	M700F008	M700F048	Total ^a
(variety) Ontario)					-		0.40				
2008						14	0.14	< LOD	0.26	< 0.01	0.41
(Tart— Montmorency)	3	8 6	124 126 124	1194 1207 1190	Fruit	0	(0.05, 0.05) 0.05	< LOD	(0.21, 0.15, 0.14) 0.17	(0.04, 0.03, 0.03) 0.03	0.25
			374			1	0.20	< LOD	0.30	0.05	0.55
						7	0.02	< LOD	0.11	0.06	0.17
						14	0.06	< LOD	0.14	0.10	0.28
2009/7003328	3	6	125	723	Fruit	0	0.53	< LOD	0.17	< 0.01	0.71
RCN R080184		7	125	719		1	0.51	< LOD	0.17	< 0.01	0.69
OSA (Ottawa.			125 375	/08		7	0.18	< LOD	0.23	< 0.01	0.42
Michigan)						14	0.59	< LOD	0.18	< 0.01	0.78
2008 (Sweet Same)	3	7	123	1751	Fruit	0	0.34	< LOD	0.19	< 0.01	0.54
(Sweet—Sams)		7	125	1742		1	0.36	< LOD	0.17	< 0.01	0.54
			124 372	1097		7	0.12	< LOD	0.19	< 0.01	0.32
						14	0.02	< LOD	0.16	< 0.01	0.19
2009/7003328	3	7	123	769	Fruit	0	0.82	< 0.01	0.30	< 0.01	1.13
RCN R080185		7	123	789		1	0.37	< LOD	0.24	< 0.01	0.62
(Tulare.			124 370	/90		7	0.12	< LOD	0.30	< 0.01	0.43
California)						14	0.07	< LOD	0.28	< 0.01	0.36
2008 (Sweet Tulere)	3	7	124	1957	Fruit	0	0.39	< LOD	0.22	< 0.01	0.62
(Sweet—Tulare)		7	125	1887 1961		1	0.41	< 0.01	0.23	< 0.01	0.65
			124 373	1901		7	0.16	< 0.01	0.29	< 0.01	0.46
						14	0.14	< 0.01	0.29	< 0.01	0.44
2009/7003328	3	7	125	702	Fruit	0	0.49	< LOD	0.16	0.08	0.72
RCN R080186		7	125	703		1	0.38	< 0.01	0.17	0.07	0.61
(Grant.			125 375	/01		7	0.19	< LOD	0.23	0.08	0.49
Washington)						13	0.10	< LOD	0.16	0.11	0.35
2008 (Tort	3	7	123	1869	Fruit	0	0.56	< LOD	0.13	0.05	0.73
(Tart— Montmorency)		7	123	1871		1	0.49	< LOD	0.15	0.05	0.69
5,			125 369	10/2		7	0.33	< LOD	0.19	0.08	0.59
						13	0.30	< LOD	0.15	0.10	0.53
2009/7003328	3	8	126	492	Fruit	0	0.19	< LOD	0.16	< 0.01	0.36
RCN R080187		6	127	640 501		1	0.19	< LOD	0.18	< LOD	0.38
(Wasco, Oregon)			378	501		7	0.08	< LOD	0.21	< 0.01	0.30
2008						10	0.06	< LOD	0.26	< 0.01	0.33
(Sweet—Lapin)						14	0.04	< LOD	0.13	< 0.01	0.18
	3	8	128	1554	Fruit	0	0.31	< LOD	0.18	< 0.01	0.50
		6	121	1595		1	0.20	< LOD	0.19	< 0.01	0.40
			375	1025		7	0.18	< LOD	0.22	< 0.01	0.41
						10	0.11	< LOD	0.22	< 0.01	0.34
						14	0.05	< LOD	0.11	< 0.01	0.16
2011/7004953 R110214 USA	3	7 7	124 124 124	711 686 711	Fruit	0	(0.26, 0.25) 0.26	(< LOQ, < LOQ) < LOQ	(0.10, 0.074) 0.087	(0.028, 0.023) 0.026	0.37
(Fennville, Michigan)			572			1	(0.29, 0.20) 0.25	(< LOQ, < LOQ)	(0.098, 0.085)	(0.030, 0.026) 0.028	0.37

Study No.ApplicationTrial No.No Interval gWat				Matrix	PHI	Residues (mg/	′kg)				
Trial No. Country Year (Variety)	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxapyroxad	M700F002	M700F008	M700F048	Total ^a
2011								< LOQ	0.092)		
(Tart— Montmorency)						7	(0.15, 0.18) 0.17	(< LOQ, < LOQ) < LOQ	(0.13, 0.17) 0.15	(0.048, 0.052) 0.050	0.37
2011/7004953 R110229 USA	3	7 6	126 123 124	699 683 692	Fruit	0	(1.93, 1.80) 1.87	(< LOQ, < LOQ) < LOQ	(0.42, 0.43) 0.43	(0.022, 0.021) 0.022	2.32
(Hotchkiss, Colorado) 2011 (Tort			373			1	(1.03, 1.44) 1.24	(< LOQ, < LOQ) < LOQ	(0.34, 0.38) 0.36	(0.024, 0.027) 0.026	1.63
Montmorency)						7	(0.82, 0.75) 0.79	(< LOQ, < LOQ) < LOQ	(0.52, 0.64) 0.58	(0.045, 0.046) 0.046	1.42

^a All analytes are reported in terms of themselves, except for the 2011 trials where residues are expressed as parent equivalents. Total residues ((Fluxapyroxad + M700F008 + M700F048) are expressed as parent equivalents.

LOQ is 0.01 mg/kg for each of parent fluxapyroxad and metabolites M700F008, M700F002 and M700F048

LOD is 0.002 mg/kg for each of parent fluxapyroxad and metabolites M700F008, M700F002 and M700F048

Table 7 R	Residues	from	the	foliar	application	of	fluxapyroxad	to	peaches	in	the	USA	and	Canada
(Jordan 20	010, 2009	9/7003	328)										

Study No.	Ap	plication	i		Matrix	PHI	Residues (mg/kg)				
Trial No. Country Year (Variety)	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxapyroxad	M700F002	M700F008	M700F048	Total ^a
GAP, USA	3		121- 123			0					
2009/7003328	3	8	125	747	Fruit	0	0.37	< LOD	0.01	< LOD	0.38
RCN R080188		6	125	747		1	0.29	< 0.01	0.02	< LOD	0.31
USA (Wayne, New			374	/40		7	0.07	< LOD	0.01	< 0.01	0.08
York)						14	0.05	< LOD	0.01	< LOD	0.06
2008 (Clobayan)	3	8	124	1116	Fruit	0	0.43	< LOD	0.01	< LOD	0.44
(Glonaven)		6	125	1119		1	0.43	< LOD	0.02	< LOD	0.45
			375	1129		7	0.10	< LOD	0.02	< LOD	0.12
						14	0.08	< LOD	0.03	< LOD	0.11
2009/7003328	3	7	124	511	Fruit	0	0.55	< LOD	0.02	0.01	0.58
RCN R080189		7	124	504		1	0.43	< LOD	0.03	0.01	0.47
USA (Tift, Georgia)			372	480		7	0.31	< LOD	0.04	0.03	0.37
2008 (Hawthorne)						14	0.29	< LOD	0.03	0.04	0.35
	3	7	126	1228	Fruit	0	0.42	< LOD	0.02	< 0.01	0.44
		7	125	1189		1	0.37	< LOD	0.02	< 0.01	0.39
			377	1197		7	0.29	< 0.01	0.10	0.02	0.40
						14	0.30	< LOD	0.05	0.04	0.38
2009/7003328	3	7	126	522	Fruit	0	0.55	< LOD	0.06	< LOD	0.61
RCN R080190		7	126	523		1	0.29	< LOD	0.04	< LOD	0.33
(Brooks, Georgia)			124 376	521		7	0.22	< LOD	0.08	< 0.01	0.30
2008 (Mid white 9A54-						14	(0.12, 0.10) 0.11	< LOD	0.09	< 0.01	0.20
13)	3	7	125	1251	Fruit	0	(0.19, 0.17)	<lod< td=""><td>0.04</td><td>< LOD</td><td>0.22</td></lod<>	0.04	< LOD	0.22

Study No.	Ap	plication			Matrix	PHI	Residues (mg/kg)				
Trial No. Country Year (Variety)	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxapyroxad	M700F002	M700F008	M700F048	Total ^a
		7	124	1257			0.18				
			124 373	1265		1	(0.50, 0.44) 0.47	< LOD	0.06	< LOD	0.53
						7	0.57	< LOD	0.05	< LOD	0.62
						14	0.12	< LOD	0.05	< 0.01	0.17
2009/7003328	3	7	125	930	Fruit	0	0.39	< LOD	0.02	< 0.01	0.41
RCN R080192		7	123	919		1	0.45	< LOD	0.03	< 0.01	0.48
(Lenawee, Michigan)			374	912		7	(0.14, 0.14, 0.16) 0.15	< LOD	0.03	< 0.01	0.18
2008 (Redhaven)						14	0.16, 0.16 (0.16)	< LOD	0.03	< 0.01	0.19
	3	7	124	2005	Fruit	0	0.33	< LOD	0.02	< 0.01	0.35
		7	123	1993		1	0.26	< LOD	0.02	< LOD	0.28
			375	1775		7	0.15	< LOD	0.03	< 0.01	0.18
						14	0.12	< LOD	0.03	< 0.01	0.15
2009/7003328	3	7	129	627	Fruit	0	0.10	< LOD	< 0.01	< 0.01	0.10
RCN R080193 Canada		7	129	621 578		1	0.19	< 0.01	< 0.01	< LOD	0.19
(Niagara, Ontario)			378	570		6	0.08	< LOD	0.01	< LOD	0.09
2008 (Ded Stee)						13	0.07	< 0.01	0.02	< 0.01	0.09
(Red Star)	3	7	124	1206	Fruit	0	0.26	< 0.01	0.03	< 0.01	0.29
		/	125 119	1213		1	0.28	< LOD	0.02	< 0.01	0.30
			368			6	0.26	< 0.01	0.03	< 0.01	0.29
						13	0.19	< LOD	0.04	< 0.01	0.23
2009/7003328 PCN P080104	3	7	124	738	Fruit	0	0.29	< LOD	0.01	< LOD	0.30
USA		/	123	711		1	0.28	< LOD	0.01	< 0.01	0.29
(Ottawa,			373			7	0.21	< LOD	0.02	< 0.01	0.23
Michigan) 2008			1.0.1	1.00		14	0.19	< LOD	0.02	< 0.01	0.21
(Bellaire)	3	7	124	1787	Fruit	0	0.34	< LOD	< 0.01	< 0.01	0.34
		,	124	1740		1	0.28	< LOD	0.01	< 0.01	0.29
			373			/	0.15	< LOD	0.01	< 0.01	0.16
2000/7002228	2	7	100	505	р ·/	14	0.17	< LOD	0.02	< 0.01	0.19
2009/7003328 RCN R080195	3	7	126	505 548	Fruit	0	0.17	< 0.01	< 0.01	< LOD	0.17
USA			133	555		1	0.24	< LOD	< 0.01	< LOD	0.24
(Marion, Illinois)			388			14	0.08	< 1.0D	< 0.01		0.08
2008 (Clestilavell)	2	7	126	1957	Emit	0	0.08	< LOD	< 0.01		0.00
	5	7	120	1961	FIUIL	1	0.32	< 0.01	0.01		0.33
			128	1971		7	0.15	< 1.0D	0.01		0.22
			379			14	0.08	< LOD	0.02		0.10
2009/7003328	3	6	119	826	Fruit	0	0.44	<lod< td=""><td>0.04</td><td><lod< td=""><td>0.48</td></lod<></td></lod<>	0.04	<lod< td=""><td>0.48</td></lod<>	0.48
RCN R080196		7	126	815	I Tult	1	0.50	<lod< td=""><td>0.04</td><td><lod< td=""><td>0.10</td></lod<></td></lod<>	0.04	<lod< td=""><td>0.10</td></lod<>	0.10
USA (Dontota -			124	870		7	0.33	<lod< td=""><td>0.05</td><td><lod< td=""><td>0.38</td></lod<></td></lod<>	0.05	<lod< td=""><td>0.38</td></lod<>	0.38
(Pontotoc, Oklahoma)			309			14	0.25	<lod< td=""><td>0.06</td><td>< 0.01</td><td>0.31</td></lod<>	0.06	< 0.01	0.31
2008 (Contender)	3	6	118	1393	Fruit	0	0.58	<lod< td=""><td>0.08</td><td><lod< td=""><td>0.66</td></lod<></td></lod<>	0.08	<lod< td=""><td>0.66</td></lod<>	0.66
		7	124	1368		1	0.42	< LOD	0.04	<lod< td=""><td>0.46</td></lod<>	0.46
			123	1414		7	0.33	< LOD	0.04	< LOD	0.37

Study No.	Ap	plication			Matrix	PHI	Residues (mg/kg)				
Trial No. Country Year (Variety)	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxapyroxad	M700F002	M700F008	M700F048	Total ^a
			365			14	0.26	< LOD	0.06	< 0.01	0.32
2009/7003328	3	6	140	894	Fruit	0	0.59	< LOD	0.02	< LOD	0.61
RCN R080197		7	141	900		1	0.22	< LOD	0.02	< LOD	0.24
USA (Kings California)			140 421	884		7	0.13	< LOD	0.02	< LOD	0.15
2008			721			10	0.26	< LOD	0.02	< LOD	0.28
(Klamt Cling)						14	0.08	< LOD	0.02	< LOD	0.10
	3	6	141	1837	Fruit	0	0.63	< LOD	0.03	< LOD	0.66
		7	141	1837		1	0.39	< LOD	0.03	< LOD	0.42
			$140 \\ 422$	1836		7	0.23	< LOD	0.03	< LOD	0.26
			722			10	0.13	< LOD	0.03	< LOD	0.16
						14	0.14	< LOD	0.04	< LOD	0.18
2009/7003328	3	7	124	617	Fruit	0	0.30	< LOD	0.01	< LOD	0.31
RCN R080198		7	123	612		1	0.24	< LOD	0.01	< LOD	0.25
USA (Stanislaus, California)			125 372	620		7	(0.20, 0.20) 0.20	< LOD	0.02	< LOD	0.22
2008 (Summerset)						14	0.14	< 0.01	0.02	< 0.01	0.16
	3	7	125	1574	Fruit	0	0.24	< LOD	0.01	< LOD	0.25
		7	124	1487		1	0.33	< LOD	0.02	< LOD	0.35
			374	1490		7	0.18	< LOD	0.01	< 0.01	0.19
						14	0.14	< LOD	0.02	< LOD	0.16
2009/7003328	3	7	125	704	Fruit	0	0.30	< LOD	0.01	< 0.01	0.31
RCN R080199		7	125	706		1	0.18	< LOD	0.01	< 0.01	0.19
(Madera,			375	103		7	0.13	< LOD	0.02	< 0.01	0.15
California) 2008						10	(0.08, 0.08, 0.09) 0.08	< LOD	0.01	0.01	0.10
(Angelus)						14	0.09	< LOD	0.03	< 0.01	0.12
	3	7	126	1884	Fruit	0	0.26	< LOD	0.01	< 0.01	0.27
		7	126	1880		1	0.24	< LOD	0.01	< 0.01	0.25
			377	10/1		7	0.24	< LOD	0.05	< 0.01	0.29
						10	0.13	< LOD	0.02	< 0.01	0.15
						14	0.12	< LOD	0.02	< 0.01	0.14
2009/7003328	3	7	125	842	Fruit	0	0.46	< LOD	0.03	< 0.01	0.49
RCN R080200		7	125	843		1	0.55	< LOD	0.05	< 0.01	0.60
(Grant,			375	040		7	0.29	< LOD	0.03	< 0.01	0.32
Washington)						14	0.19	< LOD	0.05	< 0.01	0.24
2008 (Snow King)	3	7	124	1870	Fruit	0	0.57	< LOD	0.03	< 0.01	0.60
(Silow Killg)		7	125	1890		1	0.59	< LOD	0.04	< 0.01	0.63
			373	1000		7	0.34	< LOD	0.05	< 0.01	0.39
						14	0.25	< LOD	0.06	0.01	0.32

^a All analytes are reported in terms of themselves. Total residues ((Fluxapyroxad + M700F008 + M700F048) are expressed as parent equivalents.

LOQ is 0.01 mg/kg for each of parent fluxapyroxad and metabolites M700F008, M700F002 and M700F048

LOD is 0.002 mg/kg for each of parent fluxapyroxad and metabolites M700F008, M700F002 and M700F048

Table 8 Residues from the foliar application of fluxapyroxad to plums in the USA and Canada (Jordan 2010, 2009/7003328)

Study No.	Ap	plicatior	1		Matrix	PHI	Residues (mg/k	(g)			
Trial No. Country Year (Variety)	No	Interval Days	l g ai/ha	Water (L/ha)		days	Fluxapyroxad	M700F002	M700F008	M700F048	Total ^a
GAP, USA	3		121– 123			0					
2009/7003328	3	7	124	558	Fruit	0	0.95	< LOD	< LOD	< LOD	0.95
RCN R080201		6	124	558		1	0.32	< LOD	< LOD	< LOD	0.32
USA (Wavne, New			125 373	501		7	0.46	< LOD	< LOD	< LOD	0.46
York)						14	0.43	< LOD	< LOD	< LOD	0.43
2008 (Stapley)	3	7	129	1119	Fruit	0	0.79	< LOD	< LOD	< LOD	0.79
(Stanley)		6	126	1125		1	0.29	< LOD	< LOD	< LOD	0.29
			381	1124		7	0.40	< LOD	< LOD	< LOD	0.40
						14	0.09	< LOD	< LOD	< LOD	0.09
2009/7003328	3	6	121	681	Fruit	0	0.49	< LOD	< LOD	< LOD	0.49
RCN R080202		6	128	720		1	0.46	< LOD	< LOD	< LOD	0.46
(Allegan,			380	720		7	0.30	< LOD	< 0.01	< LOD	0.30
Michigan)						14	0.17	< LOD	< LOD	< LOD	0.17
2008 (Farly Goldon)	3	6	120	1469	Fruit	0	0.42	< LOD	< LOD	< LOD	0.42
(Early Golden)		6	129	1543		1	0.34	< LOD	< LOD	< LOD	0.34
			129 378	1541		7	0.26	< LOD	< LOD	< LOD	0.26
						14	0.20	< LOD	< LOD	< LOD	0.20
2009/7003328	3	7	123	592	Fruit	0	0.20	< LOD	< LOD	< LOD	0.20
RCN R080203		7	121	579		1	0.17	< LOD	< LOD	< LOD	0.17
Canada (Niagara.			120 364	5//		7	0.11	< LOD	< LOD	< LOD	0.11
Ontario)						14	0.09	< LOD	< LOD	< LOD	0.09
2008 (Vanatta)	3	7	122	1182	Fruit	0	0.24	< LOD	< LOD	< LOD	0.24
(valiette)		7	121	1177		1	0.24	< LOD	< LOD	< LOD	0.24
			365	11/9		7	0.14	< LOD	< LOD	< LOD	0.14
						14	0.10	< LOD	0.01	< LOD	0.11
2009/7003328	3	7	123	717	Fruit	0	0.64	< LOD	< LOD	< LOD	0.64
RCN R080204		7	123	718		1	0.62	< LOD	< LOD	< LOD	0.62
(Ottawa,			370	/0/		7	0.59	< LOD	< LOD	< LOD	0.59
Michigan)						14	0.49	< LOD	< LOD	< LOD	0.49
2008 (Stapley)	3	7	124	1741	Fruit	0	0.44	< LOD	< LOD	< LOD	0.44
(Stanley)		7	124	1749		1	0.42	< LOD	< LOD	< LOD	0.42
			373	1724		7	0.49	< LOD	0.02	< LOD	0.51
						14	0.37	< LOD	< 0.01	< LOD	0.37
2009/7003328	3	7	138	748	Fruit	0	0.37	< LOD	< LOD	< LOD	0.37
RCN R080205		7	140	755		1	0.38	< LOD	< LOD	< LOD	0.38
USA (Tulare.			418	/30		7	0.29	< LOD	< 0.01	< LOD	0.29
California)						10	0.26	< LOD	< LOD	< LOD	0.26
2008 (Brunos)						14	0.26	< LOD	< LOD	< LOD	0.26
(1 Tulles)	3	7	140	1540	Fruit	0	0.32	< LOD	< LOD	< LOD	0.32
		7	140	1534		1	0.38	< LOD	< LOD	< LOD	0.38
			420	1335		7	0.32	< LOD	< LOD	< LOD	0.32
						10	0.24	< LOD	< LOD	< LOD	0.24
						14	0.28	< LOD	< LOD	< LOD	0.28

Study No.	Ap	plication			Matrix	PHI	Residues (mg/k	g)			
Trial No. Country Year (Variety)	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxapyroxad	M700F002	M700F008	M700F048	Total ^a
2009/7003328	3	7	124	534	Fruit	0	0.48	< LOD	< 0.01	< LOD	0.48
RCN R080206		7	123	533		1	0.47	< LOD	< 0.01	< LOD	0.47
USA (Stanislaus,			124 371	534		7	0.53	< LOD	< LOD	< LOD	0.53
California)			0,1			14	0.51	< LOD	< LOD	< LOD	0.51
2008 (Error oh Plum)	3	7	124	1488	Fruit	0	0.49	< LOD	< LOD	< LOD	0.49
(Fielicii Fiulii)		7	124	1524		1	0.56	< LOD	< 0.01	< LOD	0.56
			124 372	1525		7	0.47	< LOD	< LOD	< LOD	0.47
						14	0.54	< LOD	< LOD	< LOD	0.54
2009/7003328	3	7	124	701	Fruit	0	0.20	< LOD	< 0.01	< LOD	0.20
RCN R080207		7	124	701		1	0.18	< LOD	< LOD	< LOD	0.18
(Fresno.			123 373	703		7	0.23	< LOD	< LOD	< LOD	0.23
California)						14	0.09	< LOD	< LOD	< LOD	0.09
2008 (Flavor	3	7	125	1870	Fruit	0	0.18	< LOD	< LOD	< LOD	0.18
KICII)		7	126	1883		1	0.17	< LOD	< LOD	< LOD	0.17
			377	1005		7	0.17	< LOD	< LOD	< LOD	0.17
						14	0.08	< LOD	< LOD	< LOD	0.08
2009/7003328	3	7	126	476	Fruit	0	0.24	< LOD	< 0.01	< LOD	0.24
RCN R080208 USA Madera,		7	128	473 463	Emit	1	0.27	< LOD	< LOD	< LOD	0.27
			379			7	0.16	< LOD	< LOD	< LOD	0.16
California) 2008		7				14	(0.12, 0.12) 0.12	< LOD	< 0.01	(< 0.01, < 0.01) < 0.01	0.12
(Fortune)	3	7	122	1851	Fruit	0	0.14	< LOD	< LOD	< LOD	0.14
		7	125	1898		1	0.13	< LOD	< LOD	< LOD	0.13
			370	1800		7	0.13	< LOD	< LOD	< LOD	0.13
						14	0.12	< LOD	< LOD	< LOD	0.12
2009/7003328	3	7	125	843	Fruit	0	0.30	< LOD	< 0.01	< LOD	0.30
RCN R080209		7	124	836 831		1	0.37	< LOD	0.02	< LOD	0.39
(Grant,			372	0.51		7	0.15	< LOD	< 0.01	< LOD	0.15
Washington)						14	0.20	< LOD	< 0.01	< 0.01	0.20
2008 (Pluot)	3	7	124	1872	Fruit	0	0.27	< LOD	< 0.01	< LOD	0.27
(1 1000)		7	123	1858		1	0.15	< LOD	< 0.01	< LOD	0.15
			372	1005		7	0.17	< LOD	< 0.01	< LOD	0.17
						14	0.13	< LOD	< 0.01	< LOD	0.13
2009/7003328	3	7	124	752	Fruit	0	0.30	< LOD	< 0.01	< LOD	0.30
RCN R080210		7	126	770 776		1	0.39	< LOD	< LOD	< LOD	0.39
(Polk, Oregon)			377	,,,,,		7	0.37	< LOD	< LOD	< LOD	0.37
2008						14	0.27	< LOD	< 0.01	< LOD	0.27
(Moyer)	3	7	124	1508	Fruit	0	0.31	< LOD	< LOD	< LOD	0.31
		7	128	1555		1	0.55	< LOD	< LOD	< LOD	0.55
			381	1521		7	0.48	< LOD	< 0.01	< LOD	0.48
						14	0.29	< LOD	< 0.01	< LOD	0.29

^a All analytes are reported in terms of themselves. Total residues ((Fluxapyroxad + M700F008 + M700F048) are expressed as parent equivalents.

LOQ is 0.01 mg/kg for each of parent fluxapyroxad and metabolites M700F008, M700F002 and M700F048

LOD is 0.002 mg/kg for each of parent fluxapyroxad and metabolites M700F008, M700F002 and M700F048

Berries and other small fruits

Blueberries

Residue trials in <u>blueberries</u> (highbush type) were conducted in the USA (Korpalski, 2012-b). Three foliar applications of a 62.5 g/L EC formulation were made at each site using hand-held equipment. A spray adjuvant (non-ionic surfactant or crop oil concentrate) was included with all applications. Duplicate fruit samples were collected on the day of the last application, with additional samples being collected at intervals up to 7 days after the last application at one site in order to generate decline data.

Location,	Applicati				Residues, mg	/kg parent			
Year (variety)	on		a	DAT	equivalents	1 170050	1.50050	1/70050	T 10
	No. (RTI,	Rate, g ai/	Spray	DAL	Fluxapyrox	M700F0	M700F0	M700F0	Total ^a
	days)	ha	volume	A	ad	02	08	48	
			(L/ha)						
New Tripoli,	3 (7, 7)	200, 200,	960,	0	<u>1.7</u> (1.7,	< 0.02	< 0.01	< 0.01	<u>1.7</u>
PA, USA,		200	930,		1.7)	(< 0.02,	(< 0.01,	(< 0.01,	(1.7,
2011			970			< 0.02)	< 0.01)	< 0.01)	1.7)
(Bluecrop)									
Oglethorpe,	3 (7, 7)	200, 200,	960,	0	<u>2.4</u> (2.2,	< 0.02	0.02	< 0.01	<u>2.4</u>
GA, USA,		200	970,		2.6)	(< 0.02,	(0.01,	(< 0.01,	(2.2,
2011 (Climax)			950			< 0.02)	0.02)	< 0.01)	2.6)
Oglethorpe,	3 (7, 7)	200, 200,	970,	0	1.6 (1.7,	< 0.02	< 0.01	< 0.01	1.6
GA, USA,		200	960,		1.5)	(< 0.02,	(< 0.01,	(< 0.01,	(1.7,
2011			950			< 0.02)	< 0.01)	< 0.01)	1.5)
(Woodward)									
				1	1.7 (1.8,	< 0.02	< 0.01	< 0.01	1.7
					1.6)	(< 0.02,	(< 0.01,	(< 0.01,	(1.8,
						< 0.02)	< 0.01)	< 0.01)	1.6)
				3	1.2 (1.0,	< 0.02	0.01	< 0.01	1.2
					1.3)	(< 0.02,	(< 0.01,	(< 0.01,	(1.0,
						< 0.02)	0.01)	< 0.01)	1.4)
				5	0.90 (0.80,	< 0.02	< 0.01	< 0.01	0.90
					1.0)	(< 0.02,	(< 0.01,	(< 0.01,	(0.80,
						< 0.02)	< 0.01)	< 0.01)	1.0)
				7	0.61 (0.59,	< 0.02	0.01	< 0.01	0.62
					0.63)	(< 0.02,	(0.01,	(< 0.01,	(0.60,
						< 0.02)	< 0.01)	< 0.01)	0.63)
White Heath,	3 (7, 7)	200, 200,	970,	0	<u>3.8</u> (3.9,	< 0.02	0.01	< 0.01	3.8
IL, USA,		210	960,		3.6)	(< 0.02,	(0.01,	(< 0.01,	(3.9,
2011 (Duke)			980			< 0.02)	< 0.01)	< 0.01)	3.6)
Fremont, MI,	3 (7, 7)	200, 200,	960,	0	<u>1.3</u> (1.2,	< 0.02	< 0.01	< 0.01	1.3
USA, 2011		200	960,		1.4)	(< 0.02,	(< 0.01,	(< 0.01,	(1.2,
(Bluecrop)			960			< 0.02)	< 0.01)	< 0.01)	1.4)
Hillsboro,	3 (7, 7)	200, 200,	970,	0	<u>2.4</u> (2.5,	< 0.02	0.02	< 0.01	2.4
OR, USA,		200	950,		2.3)	(< 0.02,	(0.02,	(< 0.01,	(2.5,
2011			960			< 0.02)	0.02)	< 0.01)	2.3)
(Bluecrop)									

Table 9 Residues of fluxapyroxad and metabolites in blueberries

No residues were detected in the untreated control samples

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

Caneberries

Residue trials in <u>raspberries</u> and <u>blackberries</u> were conducted in the USA (Korpalski, 2012-b). Three foliar applications of a 62.5 g/L EC formulation were made at each site using hand-held equipment. A spray adjuvant (crop oil concentrate or non-ionic surfactant) was included with all applications. Duplicate treated fruit samples were collected on the day of the last application, with additional

samples being collected at intervals up to 7 days after the last application at one site in order to generate decline data.

Location, Year	Applicati				Residues, mg	/kg parent			
(variety)	on				equivalents				
	No. (RTI,	Rate, g ai/	Spray	DAL	Fluxapyrox	M700F0	M700F0	M700F0	Total ^a
	days)	ha	volume	А	ad	02	08	48	
			(L/ha)						
BLACKBERRI									
ES									
Hillsboro, OR,	3 (7, 7)	200, 200,	950,	0	<u>1.4</u> (1.2,	< 0.02	< 0.01	< 0.001	<u>1.4</u>
USA, 2011		200	950,		1.5)	(< 0.02,	(< 0.01,	(< 0.001,	(1.2,
(Marion)			970			< 0.02)	< 0.01)	< 0.001)	1.5)
RASPBERRIE									
S									
Oglethorpe,	3 (7, 7)	200, 200,	940,	0	1.1 (1.3,	< 0.02	< 0.01	< 0.01	1.1
GA, USA,		200	960,		0.86)	(< 0.02,	(< 0.01,	(< 0.01,	(1.3,
2011 (Nova)			950			< 0.02)	< 0.01)	< 0.01)	0.86)
Oglethorpe,	3 (7, 7)	200, 210,	960,	0	<u>2.0</u> (2.1,	< 0.02	< 0.01	< 0.01	2.0
GA, USA,		200	990,		1.9)	(< 0.02,	(< 0.01,	(< 0.01,	(2.1,
2011			960			< 0.02)	< 0.01)	< 0.01)	1.9)
(Willamette)									
				1	1.6 (1.4,	< 0.02	< 0.01	< 0.01	1.6
					1.8)	(< 0.02,	(< 0.01,	(< 0.01,	(1.4,
						< 0.02)	< 0.01)	< 0.01)	1.8)
				3	1.1 (1.1,	< 0.02	< 0.01	< 0.01	1.1
					1.1)	(< 0.02,	(< 0.01,	(< 0.01,	(1.1,
						< 0.02)	< 0.01)	< 0.01)	1.1)
				5	1.1 (1.0,	< 0.02	< 0.01	< 0.01	1.1
					1.1)	(< 0.02,	(< 0.01,	(< 0.01,	(1.0,
						< 0.02)	< 0.01)	< 0.01)	1.1)
				7	0.66 (0.59,	< 0.02	< 0.01	< 0.01	0.66
					0.73)	(< 0.02,	(< 0.01,	(< 0.01,	(0.59,
						< 0.02)	< 0.01)	< 0.01)	0.73)

Table 10 Residues of fluxapyroxad and metabolites in blackberries and raspberries

No residues were detected in the untreated control samples

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

Grapes

Residue trials in <u>grapes</u> were conducted in the USA (Belcher and Riley, 2012-a). Three applications of a 300 g/L SC formulation of fluxapyroxad were made at target rates of 200 g ai/ha using an airblast or backpack sprayer. An adjuvant (non-ionic surfactant, crop oil concentrate or organosiloxane) was included in all tank mixes. Duplicate treated fruit samples were collected at intervals from 0–21 days after the last application.

Table 11 Residues of fluxapyroxad and metabolites in grape berries

Location, Year (variety)	Applicati on				Residues, mg/ equivalents	/kg parent			
	No. (RTI,	Rate, g ai/	Spray	DAL	Fluxapyrox	M700F00	M700F00	M700F04	Total ^a
	days)	ha	volume (L/ha)	А	ad	2	8	8	
Lehigh, PA, USA, 2011 (Corot Noir)	3 (10, 10)	200, 200, 200	670, 660, 650	0	0.27 (0.29, 0.24)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.27 (0.29, 0.24)
				1	0.25 (0.21, 0.28)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.25 (0.21, 0.28)

Location, Year (variety)	Applicati on				Residues, mg/ equivalents	/kg parent			
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a
				7	0.18 (0.18, 0.17)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.18 (0.18, 0.17)
				14	$\frac{0.13}{0.14}(0.11,$	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.13 (0.11, 0.14)
Yates, NY, USA, 2011 (DeChauna c)	3 (10, 11)	200, 200, 200	940, 940, 940	0	0.87 (0.89, 0.84)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.87 (0.89, 0.84)
				1	0.66 (0.69, 0.62)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.66 (0.69, 0.62)
				7	0.75 (0.80, 0.70)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.75 (0.80, 0.70)
				14	0.60 (0.41, 0.78)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.60 (0.41, 0.78)
				21	$\frac{0.71}{0.61}$ (0.81,	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$ \begin{array}{r} \underline{0.71} \\ (0.81, \\ 0.61) \end{array} $
Fresno, CA, USA, 2011 (Thompson)	3 (10, 10)	200, 210, 200	470, 480, 460	0	0.20 (0.22, 0.18)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.20 (0.22, 0.18)
				1	0.25 (0.24, 0.26)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.25 (0.24, 0.26)
				7	0.19 (0.19, 0.19)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.19 (0.19, 0.19)
				14	0.27 (0.20, 0.34)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.27 (0.20, 0.34)
				21	0.26 (0.24, 0.28)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.26 (0.24, 0.28)
Fresno, CA, USA, 2011 (Cabernet)	3 (10, 10)	200, 200, 200	1850, 1870, 1860	0	1.5 (1.7, 1.2)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	1.5 (1.7, 1.2)
				1	1.5 (1.5, 1.5)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	1.5 (1.5, 1.5)
				7	1.5 (1.7, 1.3)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	1.5 (1.7, 1.3)
				14	$\frac{1.4}{1.4}$ (1.3, 1.4)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	
Fresno, CA, USA, 2011 (Flame Seedless)	3 (10, 10)	200, 200, 200	1860, 1860, 1870	0	0.82 (0.82, 0.81)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.82 (0.82, 0.81)
				1	0.85 (0.90, 0.80)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.85 (0.90, 0.80)
				7	0.62 (0.64, 0.60)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.62 (0.64, 0.60)

Location, Year (variety)	Applicati on				Residues, mg/kg parent equivalents				
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a
				14	0.76 (0.73, 0.78)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.76 (0.73, 0.88)
Madera, CA, USA, 2011 (Ruby Red)	3 (10, 10)	210, 200, 200	480, 470, 470	0	0.21 (0.20, 0.22)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.21 (0.20, 0.22)
				1	0.16 (0.18, 0.14)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.16 (0.18, 0.14)
				7	0.13 (0.12, 0.13)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.13 (0.12, 0.13)
				14	<u>0.11</u> (0.13, 0.09)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.11</u> (0.13, 0.09)
San Luis Obispo, CA, USA, 2011 (Marsanne)	3 (11, 10)	200, 210, 200	430, 450, 450	0	0.23 (0.27, 0.18)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.23 (0.27, 0.18)
				1	0.20 (0.19, 0.21)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.20 (0.19, 0.21)
				7	0.17 (0.15, 0.18)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.17 (0.15, 0.18)
				14	0.13 (0.18, 0.08)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.13 (0.18, 0.08)
San Luis Obispo, CA, USA, 2011 (Cabernet Sauvignon)	3 (14, 13)	200, 200, 200	1490, 1440, 1490	0	0.65 (0.66, 0.64)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.65 (0.66, 0.64)
				1	0.71 (0.75, 0.66)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.71 (0.75, 0.66)
				7	0.39 (0.30, 0.48)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.39 (0.30, 0.48)
				14	$\frac{0.23}{0.11}$ (0.34,	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.23</u> (0.34, 0.11)
Tulare, CA, USA, 2011 (Crimson)	3 (10, 10)	200, 200, 200	650, 650, 660	0	0.59 (0.63, 0.54)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.59 (0.63, 0.54)
				1	0.53 (0.57, 0.48)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.53 (0.57, 0.48)
				7	0.45 (0.50, 0.39)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.45 (0.50, 0.39)
				14	<u>0.51</u> (0.43, 0.59)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.51</u> (0.43, 0.59)
Tulare, CA, USA, 2011	3 (10, 10)	200, 200, 200	2320, 2320,	0	0.45 (0.46, 0.43)	< 0.02 (< 0.02,	< 0.01 (< 0.01,	< 0.01 (< 0.01,	0.45, (0.46,

Location, Year (variety)	Applicati on				Residues, mg/kg parent equivalents				
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a
(Globe)			2300			< 0.02)	< 0.01)	< 0.01)	0.43)
				1	0.43 (0.48,	< 0.02	< 0.01	< 0.01	0.43
					0.38)	(< 0.02,	(< 0.01,	(< 0.01,	(0.48,
						< 0.02)	< 0.01)	< 0.01)	0.38)
				7	0.43 (0.42,	< 0.02	< 0.01	< 0.01	0.43
					0.43)	(< 0.02,	(< 0.01,	(< 0.01,	(0.42,
						< 0.02)	< 0.01)	< 0.01)	0.43)
				14	0.27 (0.28,	< 0.02	< 0.01	< 0.01	0.27
					0.26)	(< 0.02,	(< 0.01,	(< 0.01,	(0.28,
						< 0.02)	< 0.01)	< 0.01)	0.26)
Grant, WA,	3 (10, 10)	210, 210,	1870,	0	0.57 (0.59,	< 0.02	< 0.01	< 0.01	0.57
USA, 2011		210	1870,		0.54)	(< 0.02,	(< 0.01,	(< 0.01,	(0.59,
(White			1860			< 0.02)	< 0.01)	< 0.01)	0.54)
Riesling)				1	0.45.00.50	0.02	0.01	0.01	0.47
				1	0.47 (0.50,	< 0.02	< 0.01	< 0.01	0.47
					0.44)	(< 0.02,	(< 0.01,	(< 0.01,	(0.50, 0.44)
				7	0.49 (0.50	< 0.02)	< 0.01)	< 0.01)	0.44)
				/	0.48 (0.50,	< 0.02	< 0.01	< 0.01	0.48
					0.39)	(< 0.02, < 0.02)	(< 0.01, < 0.01)	(< 0.01, < 0.01)	(0.50, 0.20)
				1.4	0.42 (0.42	< 0.02)	< 0.01)	< 0.01)	0.39)
				14	$\frac{0.45}{0.42}$ (0.45,	< 0.02	< 0.01	< 0.01	$\frac{0.45}{0.42}$
					0.42)	(< 0.02, < 0.02)	(< 0.01, < 0.01)	(< 0.01, < 0.01)	(0.43, 0.42)
Washington	2 (7 7)	200, 200	220	0	0.85 (0.70	< 0.02	< 0.01)	< 0.01)	0.42)
	5(1,1)	200, 200, 200, 200	230,	0	0.83(0.79, 0.01)	< 0.02	< 0.01	< 0.01	(0.85)
, OK, USA, 2011 (Red		200	240,		0.91)	(< 0.02, < 0.02)	(< 0.01, < 0.01)	(< 0.01, < 0.01)	(0.79, 0.01)
Flame)			240			< 0.02)	< 0.01)	< 0.01)	0.71)
T func)				1	0.86 (0.92	< 0.02	< 0.01	< 0.01	0.86
				1	0.79)	(< 0.02	(< 0.01	(< 0.01	(0.92
						< 0.02)	< 0.01)	< 0.01)	0.79)
				7	0.90 (0.71.	< 0.02	< 0.01	< 0.01	0.90
					1.1)	(< 0.02,	(< 0.01,	(< 0.01,	(0.71,
						< 0.02)	< 0.01)	< 0.01)	1.1)
				14	0.62 (0.63,	< 0.02	< 0.01	< 0.01	0.62
					0.61)	(< 0.02,	(< 0.01,	(< 0.01,	(0.63,
						< 0.02)	< 0.01)	< 0.01)	0.61)

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

Strawberries

Residue trials in <u>strawberries</u> were conducted in the USA (Korpalski, 2012-a, and Lange and Korpalski, 2013).

Three foliar applications of a 62.5 g/L EC formulation were made at each site using handheld equipment. A spray adjuvant (non-ionic surfactant or crop oil concentrate) was included with all applications. Duplicate treated fruit samples were collected on the day of the last application, with additional samples being collected at intervals up to 7 days after the last application at one site in order to generate decline data.

Table 12 Residues of fluxapyroxad and metabolites in strawberries

Location,	Applicati		Residues, mg/kg parent		
Year (variety)	on		equivalents		

	No. (RTI,	Rate, g ai/	Spray	DAL	Fluxapyrox	M700F0	M700F0	M700F0	Total ^a
	days)	ha	volume	А	ad	02	08	48	
			(L/ha)						
New Tripoli,	3 (7, 7)	200, 200,	190,	0	<u>0.21</u> (0.23,	< 0.01	0.01	< 0.01	0.22
PA, USA,		210	190,		0.19)	(< 0.02,	(< 0.01,	(< 0.01,	(0.23,
2011			200			< 0.01)	0.01)	0.01)	0.21)
(Earliglow)									
Winter	3 (7, 7)	200, 200,	190,	0	<u>2.3</u> (2.2,	< 0.02	0.02	< 0.01	<u>2.4</u>
Garden, FL,		200	190,		2.5)	(< 0.02,	(0.01,	(< 0.01,	(2.2,
USA, 2011			190			< 0.02)	0.02)	< 0.01)	2.5)
(Camarosa)									
Sparta, MI,	3 (7, 7)	200, 200,	190,	0	<u>0.26</u> (0.28,	< 0.02	< 0.01	< 0.01	<u>0.26</u>
USA, 2011		200	190,		0.24)	(< 0.02,	(< 0.01,	(< 0.01,	(0.28,
(Jewel)			190			< 0.02)	< 0.01)	< 0.01)	0.24)
Guadalupe,	3 (7, 7)	210, 210,	200,	0	<u>0.76</u> (0.80,	< 0.02	< 0.01	< 0.01	0.76
CA, USA,		210	200,		0.72)	(< 0.02,	(< 0.01,	(< 0.01,	(0.80,
2011 (Albion)			190			< 0.02)	< 0.01)	< 0.01)	0.72
Fresno, CA,	3 (7, 7)	200, 200,	190,	0	<u>0.87</u> (0.89,	< 0.02	< 0.01	< 0.01	<u>0.87</u>
USA, 2011		200	190,		0.84)	(< 0.02,	(< 0.01,	(< 0.01,	(0.89,
(Albion)			190			< 0.02)	< 0.01)	< 0.01)	0.84)
				1	0.84 (0.80,	< 0.02	< 0.01	< 0.01	0.84
					0.87)	(< 0.02,	(< 0.01,	(< 0.01,	(0.80,
						< 0.02)	< 0.01)	< 0.01)	0.87)
				3	0.81 (0.80,	< 0.02	< 0.01	< 0.01	0.81
					0.81)	(< 0.02,	(< 0.01,	(< 0.01,	(0.80,
						< 0.02)	< 0.01)	< 0.01)	0.80)
				5	0.64 (0.63,	< 0.02	< 0.01	< 0.01	0.64
					0.65)	(< 0.02,	(< 0.01,	(< 0.01,	(0.63,
						< 0.02)	< 0.01)	< 0.01)	0.65)
				7	0.48 (0.34,	< 0.02	< 0.01	< 0.01	0.48
					0.61)	(< 0.02,	(< 0.01,	(< 0.01,	(0.34,
						< 0.02)	< 0.01)	< 0.01)	0.61)
Hillsboro,	3 (7, 7)	200, 200,	190,	0	<u>0.97</u> (1.0,	< 0.02	< 0.01	< 0.01	0.97
OR, USA,		200	190,		0.90)	(< 0.02,	(< 0.01,	(< 0.01,	(1.0,
2011 (Fern)			190			< 0.02)	< 0.01)	< 0.01)	0.90)
Sorrento, FL,	3 (7, 7)	220, 200,	200,	0	<u>0.76</u> (0.67,	< 0.02	< 0.01	< 0.01	0.76
USA, 2012		200	190,		0.85)	(< 0.02,	(< 0.01,	(< 0.01,	(0.67,
(Radiance)			190			< 0.02)	< 0.01)	< 0.01)	0.85)
				1	0.62 (0.64,	< 0.02	< 0.01	< 0.01	0.62
					0.59)	(< 0.02,	(< 0.01,	(< 0.01,	(0.64,
						< 0.02)	< 0.01)	< 0.01)	0.59)
Sanger, CA,	3 (7, 7)	200, 200,	190,	0	0.94 (0.87,	< 0.02	< 0.01	< 0.01	0.94
USA, 2012		200	190,		1.0)	(< 0.02,	(< 0.01,	(< 0.01,	(0.87,
(Albion)			180			< 0.02)	< 0.01)	< 0.01)	1.0)
				1	<u>1.0</u> (0.91,	< 0.02	0.01	< 0.01	1.0
					1.1)	(< 0.02,	(< 0.01,	(< 0.01,	(0.91,
						< 0.02)	0.01)	< 0.01)	1.1)

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

Tropical fruit—inedible peel

Banana

A total of 12 trials was conducted in <u>bananas</u> in Brazil (Guimaraes, 2013-a), Costa Rica, Ecuador and Colombia (Guimaraes, 2013-b). Four applications of a 300 g/L SC formulation were made at a target rate of 150 g ai/ha using a pressurised backpack sprayer. A mineral oil and an emulsifier were included in the spray tank for each application. Prior to application, half the fruits in each plot were covered with plastic bags. Bananas (both bagged and unbagged) were sampled at 0, 1, 5 and 10 days after the last application for the decline trials, and at day 0 only for the single point trials. In the single point trials, separate analyses of peel and pulp were conducted.

Location, Year (variety)	Applicatio n				Sample	Residues parent eq	, mg/kg Juivalents			
	No. (RTI, days)	Rate, g ai/ ha	Spray volum e (L/ha)	DAL A		Parent	M700 F002	M700 F008	M70 0 F048	Total ^a
Sao Francisco, Sao Paolo, Brazil, 2013 (Maçã)	4 (12, 13, 11)	150, 150, 150, 150	25, 25, 25, 25	0	Unbagge d fruit	0.22 (0.22, 0.22, 0.21)	< 0.02	< 0.01	< 0.0	0.22 (0.22, 0.22, 0.21)
				1	Unbagge d fruit	0.36 (0.42, 0.31, 0.36)	< 0.02	< 0.01	< 0.0 1	0.36 (0.42, 0.31, 0.36)
				5	Unbagge d fruit	0.30 (0.25, 0.32, 0.32)	< 0.02	< 0.01	< 0.0 1	0.30 (0.25, 0.32, 0.32)
				10	Unbagge d fruit	0.21 (0.22, 0.20, 0.21)	< 0.02	< 0.01	< 0.0	0.21 (0.22, 0.20, 0.21)
				0	Bagged fruit	0.12	< 0.02	< 0.01	< 0.0 1	0.12
				1	Bagged fruit	0.04	< 0.02	< 0.01	< 0.0 1	0.04
				5	Bagged fruit	0.03	< 0.02	< 0.01	< 0.0 1	0.03
				10	Bagged fruit	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
Palmeira d'Oeste, Sao Paolo, Brazil, 2013 (Maçã)	4 (12, 13, 11)	150, 150, 150, 150	25, 25, 25, 25	0	Unbagge d fruit	<u>0.77</u> (0.87, 0.69, 0.74)	< 0.02	< 0.01	< 0.0	0.77 (0.87, 0.69, 0.74)
				1	Unbagge d fruit	0.56 (0.58, 0.52, 0.59)	< 0.02	< 0.01	< 0.0 1	0.56 (0.58, 0.52, 0.59)
				5	Unbagge d fruit	0.63 (0.71, 0.57, 0.61)	< 0.02	< 0.01	< 0.0 1	0.63 (0.71, 0.57, 0.61)
				10	Unbagge d fruit	0.46 (0.54, 0.43, 0.40)	< 0.02	< 0.01	< 0.0 1	0.46 (0.54, 0.43, 0.40)
				0	Bagged fruit	0.13	< 0.02	< 0.01	< 0.0	0.13
				1	Bagged fruit	0.06	< 0.02	< 0.01	< 0.0 1	0.06
				5	Bagged fruit	0.04	< 0.02	< 0.01	< 0.0 1	0.04
				10	Bagged fruit	0.03	< 0.02	< 0.01	< 0.0 1	0.03
Londrina, Parana, Brazil, 2013 (Grande	4 (12, 12, 12)	150, 150, 150, 150	25, <u>25</u> , 25, 25	0	Unbagge d fruit	0.04	< 0.02	< 0.01	< 0.0	0.04

Table 13 Residues of fluxapyroxad and metabolites in banana (Brazilian trials, Guimaraes, 2013-a)

Location, Year (variety)	Applicatio n				Sample	Residues, mg/kg parent equivalents				
	No. (RTI, days)	Rate, g ai/ ha	Spray volum e (L/ha)	DAL A		Parent	M700 F002	M700 F008	M70 0 F048	Total ^a
Naine)										
				1	Unbagge d fruit	0.06	< 0.02	< 0.01	< 0.0 1	0.06
				5	Unbagge d fruit	0.07	< 0.02	< 0.01	< 0.0 1	0.07
				10	Unbagge d fruit	0.02	< 0.02	< 0.01	< 0.0 1	0.02
				0	Bagged fruit	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				1	Bagged fruit	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				5	Bagged fruit	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				10	Bagged fruit	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
Ibipora, Parana, Brazil, 2013 (Grande Naine)	4 (12, 12, 12)	150, 150, 150, 150	25, 25, 25, 25	0	Unbagge d fruit	0.14	< 0.02	< 0.01	< 0.0	0.14
				1	Unbagge d fruit	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				5	Unbagge d fruit	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				10	Unbagge d fruit	0.01	< 0.02	< 0.01	< 0.0 1	0.01
				0	Bagged fruit	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				1	Bagged fruit	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				5	Bagged fruit	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				10	Bagged fruit	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01

Residues were largely undetected in the untreated control samples, with a few detections at levels < LOQ

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

Table 14 Residues	s of fluxapyroxad	and metabo	lites in	bananas	(Costa	Rica,	Ecuador	and	Colombia,
Guimaraes, 2013-b))								

Location, Year (variety)	Application				Sampl e	Residues, 1 equivalents	ng/kg parent			
	No. (RTI, days)	Rate, g ai/h a	Spray volume (L/ha)	DAL A		Parent	M700 F002	M700 F008	M700 F048	Total ^a
Unbagged fruit										
Cariari, Pococi, Limón, Costa Rica, 2013 (Cavendish)	4 (12, 12, 12)	150, 150, 160, 160	24, 25, 27, 27	0	Whole fruit	0.07	< 0.02	< 0.01	< 0.01	0.07
				1	Whole fruit	0.07	< 0.02	< 0.01	< 0.01	0.07

Location, Year (variety)	Application				Sampl e	Residues, a equivalent	mg/kg parent s			
	No. (RTI, days)	Rate, g ai/h a	Spray volume (L/ha)	DAL A		Parent	M700 F002	M700 F008	M700 F048	Total ^a
				5	Whole fruit	0.08	< 0.02	< 0.01	< 0.01	0.08
				10	Whole fruit	0.05	< 0.02	< 0.01	< 0.01	0.05
Carrandi, Matina, Limón, Costa Rica, 2013 (Cavendish)	4 (12, 12, 12)	160, 150, 140, 150	27, 25, 24, 25	0	Whole fruit	0.10	< 0.02	< 0.01	< 0.01	0.10
				0	Peel	0.85	< 0.02	< 0.01	< 0.01	0.85
				0	Pulp	0.06	< 0.02	< 0.01	< 0.01	0.06
Bataan, Matina, Limón, Costa Rica, 2013 (Cavendish)	4 (12, 12, 12)	160, 160, 150, 150	27, 26, 25, 26	0	Whole fruit	0.06	< 0.02	< 0.01	< 0.01	0.06
				0	Peel	0.10	< 0.02	< 0.01	< 0.01	0.10
				0	Pulp	0.03	< 0.02	< 0.01	< 0.01	0.03
Triunfo, Guayas, Ecuador, 2013 (Williams)	4	150, 150, 150, 150	25, 25, 25, 25	0	Whole fruit	1.6	< 0.02	< 0.01	< 0.01	1.6
				0	Peel	1.0	< 0.02	< 0.01	< 0.01	1.0
				0	Pulp	0.09	< 0.02	< 0.01	< 0.01	0.09
Triunfo, Guayas, Ecuador, 2013 (Williams)	4	150, 150, 150, 150	25, 25, 25, 25	0	Whole fruit	0.17	< 0.02	< 0.01	< 0.01	0.17
				0	Peel	0.22	< 0.02	< 0.01	< 0.01	0.22
				0	Pulp	0.01	< 0.02	< 0.01	< 0.01	0.01
Setor Rancho Grande, Canar, Ecuador (Williams)	4	150, 150, 150, 150	25, 25, 25, 25	0	Whole fruit	0.16	< 0.02	< 0.01	< 0.01	0.16
				0	Peel	0.24	< 0.02	< 0.01	< 0.01	0.24
				0	Pulp	0.03	< 0.02	< 0.01	< 0.01	0.03
Zona Bananera Rio Frio, Zona Bananera Sector Centro, Colombia, 2013 (Gran Enano)	4	150, 150, 150, 150	25, 25, 25, 25	0	Whole fruit	0.66	< 0.02	< 0.01	< 0.01	0.66
				0	Peel	1.1 c0.01	< 0.02	< 0.01	< 0.01	1.1
				0	Pulp	0.10	< 0.02	< 0.01	< 0.01	0.10
S.A. Macondo, Zona Bananera, Sector Sur, Colombia, 2013 (Williams)	4	150, 150, 150, 150	25, 25, 25, 25	0	Whole fruit	0.15	< 0.02	< 0.01	< 0.01	0.15

Location, Year (variety)	Application				Sampl e	Residues, equivalent	mg/kg parent ts			
	No. (RTI, days)	Rate, g ai/h a	Spray volume (L/ha)	DAL A		Parent	M700 F002	M700 F008	M700 F048	Total ^a
				0	Peel	0.34	< 0.02	< 0.01	< 0.01	0.34
				0	Pulp	0.05	< 0.02	< 0.01	< 0.01	0.05
Bagged fruit										
Cariari, Pococi, Limón, Costa Rica, 2013 (Cavendish)	4	150, 150, 150, 150	25, 25, 25, 25	0	Whole fruit	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01
				1	Whole fruit	0.01	< 0.02	< 0.01	< 0.01	0.01
				5	Whole fruit	0.02	< 0.02	< 0.01	< 0.01	0.02
				10	Whole	0.01	< 0.02	< 0.01	< 0.01	0.01
Carrandi, Matina, Limón, Costa Rica, 2013 (Cavendish)	4	150, 150, 150, 150	25, 25, 25, 25	0	Whole fruit	0.02	< 0.02	< 0.01	< 0.01	0.02
				0	Peel	0.03	< 0.02	< 0.01	< 0.01	0.03
				0	Pulp	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01
Bataan, Matina, Limón, Costa Rica, 2013 (Cavendish)	4	150, 150, 150, 150	25, 25, 25, 25	0	Whole fruit	0.02	< 0.02	< 0.01	< 0.01	0.02
(,				0	Peel	0.02	< 0.02	< 0.01	< 0.01	0.02
				0	Pulp	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01
Triunfo, Guayas, Ecuador, 2013 (Williams)	4	150, 150, 150, 150	25, 25, 25, 25	0	Whole fruit	0.03	< 0.02	< 0.01	< 0.01	0.03
				0	Peel	0.12	< 0.02	< 0.01	< 0.01	0.12
				0	Pulp	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01
Triunfo, Guayas, Ecuador, 2013 (Williams)	4	150, 150, 150, 150	25, 25, 25, 25	0	Whole fruit	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01
				0	Peel	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01
				0	Pulp	< 0.002	< 0.02	< 0.01	< 0.01	< 0.002
Setor Rancho Grande, Canar, Ecuador (Williams)	4	150, 150, 150, 150	25, 25, 25, 25	0	Whole fruit	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01
				0	Peel	0.04	< 0.02	< 0.01	< 0.01	0.04
				0	Pulp	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01
Zona Bananera Rio Frio, Zona Bananera Sector Centro, Colombia, 2013 (Gran	4	150, 150, 150, 150	25, 25, 25, 25	0	Whole fruit	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01

Location, Year (variety)	Application				Sampl e	Residues, r equivalent	mg/kg parent s			
	No. (RTI, days)	Rate, g ai/h a	Spray volume (L/ha)	DAL A		Parent	M700 F002	M700 F008	M700 F048	Total ^a
Enano)										
				0	Peel	0.02	< 0.02	< 0.01	< 0.01	0.02
				0	Pulp	< 0.002	< 0.02	< 0.01	< 0.01	< 0.002
S.A. Macondo, Zona Bananera, Sector Sur, Colombia, 2013 (Williams)	4	150, 150, 150, 150	25, 25, 25, 25	0	Whole fruit	0.02	< 0.02	< 0.01	< 0.01	0.02
				0	Peel	0.05	< 0.02	< 0.01	< 0.01	0.05
				0	Pulp	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01

Residues were largely undetected in the untreated control samples, with a few detections at levels < LOQ and a single detection at the LOQ (noted above)

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

Mango

Four trials in <u>mangoes</u> were conducted in Brazil (Dantas and Cardoso, 2012). Four applications of an SC formulation containing 333 g/L pyraclostrobin + 167 g/L fluxapyroxad were made a target rate of 0.4 L/ha (0.133 kg ai/ha pyraclostrobin + 0.067 kg ai/ha fluxapyroxad) and a target interval of 7 days. Fruit was sampled 7 days after the last application, with additional samples being collected at intervals from 0-14 days at two sites to generate decline data.

Table 15 Residues of fluxapyroxad and metabolites in mangoes

Location, Year (variety)	Applicati on				Residues, mg equivalents	/kg parent			
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F0 02	M700F008	M700F0 48	Total ^a
San Antonio de Posse, Sao Paolo, Brazil, 2010 (Palmer)	4 (8, 6, 8)	67, 67, 67, 67	1000, 1000, 1000, 1000	0	0.13	< 0.02	< 0.01	< 0.01	0.13
				3	0.14	< 0.02	< 0.01	< 0.01	0.14
				7	0.14	< 0.02	< 0.01	< 0.01	0.14
				10	0.07	< 0.02	< 0.01	< 0.01	0.07
				14	0.08	< 0.02	< 0.01	< 0.01	0.08
Anapolis, Goiana, Brazil, 2010 (Tommy)	4 (10, 4, 7)	67, 67, 67, 67	1000, 1000, 1000, 1000	0	0.33	< 0.02	< 0.01	< 0.01	0.33
				3	0.31	< 0.02	< 0.01	< 0.01	0.31
				7	0.39	< 0.02	< 0.01	< 0.01	0.39
				10	0.21	< 0.02	< 0.01	< 0.01	0.21
				14	0.23	< 0.02	< 0.01	< 0.01	0.23

Location, Year (variety)	Applicati on				Residues, mg/ equivalents	/kg parent			
	No. (RTI,	Rate, g ai/	Spray	DAL	Fluxapyrox	M700F0	M700F008	M700F0	Total ^a
	days)	ha	volume	А	ad	02		48	
			(L/ha)						
Conchal,	4 (7, 7, 7)	67, 67, 67,	1000,	7	0.21	< 0.02	< 0.01	< 0.01	0.21
Sao Paolo,		67	1000,						
Brazil, 2010			1000,						
(Palmer)			1000						
Jaboticabal,	4 (7, 7, 7)	67, 67, 67,	1000,	7	0.16	< 0.02	< 0.01	< 0.01	0.16
Sao Paolo,		67	1000,						
Brazil, 2010			1000,						
(Tommy)			1000						

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad.

Papaya

Four trials in <u>papaya</u> were conducted in Brazil (Jones, 2011). Four applications of an SC formulation containing 333 g/L pyraclostrobin and 167 g/L fluxapyroxad were made at a target rate of 50 g ai/ha fluxapyroxad (and 100 g ai/ha pyraclostrobin) at target intervals of 7 days using backpack sprayers. Spray adjuvants were not used in any of the applications. Fruit samples were collected at 7 days after the last application, with additional samples being collected at 0 and 14 days after the last application at the decline trial sites.

TD 1 1	1 /	D 1	C	CT	1	1	. 1 1.	•		
Table	16	Residue	a ot	thuyany	royad	and	metabolite	3 1n	nan	ava
1 aoic	10	restaue	5 01	manup	y10Auu	unu	metabolite	, 111	pup	uyu

Location, Year (variety)	Applicatio n				Residues, mg/ equivalents	/kg parent			
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a
Linhares, Espirito Santo, Brazil, 2011 (Golden)	4 (7, 7, 7)	50, 50, 50, 50,	1000, 1000, 1000, 1000	0	0.24	< 0.02	< 0.01	< 0.01	0.24
				7	0.23	< 0.02	< 0.01	< 0.01	0.23
				14	0.19	< 0.02	0.01	< 0.01	0.20
Sooretama, Espirito Santo, Brazil, 2011 (Golden)	4 (8, 6, 7)	50, 50, 50, 50	1000, 1000, 1000, 1000	0	0.37	< 0.02	< 0.01	< 0.01	0.37
				7	0.24	< 0.02	< 0.01	< 0.01	0.24
				14	0.23	< 0.02	< 0.01	< 0.01	0.23
Pinheiros, Espirito Santo, Brazil, 2011 (THB)	4 (8, 6, 7)	50, 50, 50, 50	1000, 1000, 1000, 1000	7	0.15	< 0.02	< 0.01	< 0.01	0.15
Bela Vista do Paraiso, Parana, Brazil, 2011 (Formosa)	4 (7, 7, 7)	50, 50, 50, 50	1000, 1000, 1000, 1000	7	0.02	< 0.02	< 0.01	< 0.01	0.02

No residues were detected in the untreated control samples

 $^{\rm a}$ Sum of flux apyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as flux apyroxad

Bulb vegetables

Bulb onion

A series of trials in dry <u>bulb onions</u> was conducted in the USA (Csinos, 2012-a). Three foliar broadcast applications of a 62.5 g/L EC formulation were made at a target rate of 200 g ai/ha and a target interval of 7 days using pressurised backpack sprayers. Duplicate treated samples were collected at 7 days after the last application, with additional samples being collected at intervals from 0 to 14 days at one site to generate decline data.

Table	17	Resi	dues	of	fluxapy	roxad	and	its	metabo	olites	in	bulb	onions
1 40010	÷ '			~	1100110000			100		11000		0 0010	01110110

Location, Year (variety)	Applicatio n				Residues, mg/ equivalents	/kg parent			
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a
Germansvill e, PA. USA, 2011 (Stuttgarter)	3 (7, 6)	210, 210, 210	310, 310, 310	7	$\frac{0.16}{0.13}(0.19,$	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.16</u> (0.19, 0.13)
Lebanon, OK, USA, 2011 (Walla Walla/Sweet Red/Sweet Jumbo/Red Candy Apple)	3 (7, 7)	210, 210, 210	320, 330, 320	0	0.20 (0.18, 0.21)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.20 (0.18, 0.21)
				3	0.16 (0.17, 0.15)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.16 (0.17, 0.15)
				7	$\frac{0.23}{0.25}(0.21, \\ 0.25)$	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.23</u> (0.21, 0.25)
				10	0.08 (0.09, 0.06) c0.01	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.08 (0.09, 0.06)
				14	0.14 (0.13, 0.14)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.14 (0.13, 0.14)
Claude, TX, USA, 2011 (not specified)	3 (8, 7)	200, 210, 280	340, 340, 380	7	$\frac{0.03}{0.03}(0.03, 0.03)$	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.03</u> (0.03, 0.03)
Guadalupe, CA, USA, 2011 (Renegade)	3 (7, 7)	200, 200, 200	280, 280, 280	7	0.16 (0.16, 0.16)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.16 (0.16, 0.16)
Guadalupe, CA, USA, 2011 (Candy)	3 (7, 7)	200, 200, 200	280, 280, 280	7		< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.23 (0.23, 0.22)
Malin, OR, USA, 2011 (Gilroy 550)	3 (7, 7)	200, 200, 210	280, 280, 290	7	$\frac{0.27}{0.26}(0.28, 0.26)$	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.27</u> (0.28, 0.26)

Residues were mostly undetectable in the untreated control samples, with a few detections below the LOQ, and a single detection of parent compound at the LOQ (noted above)

 $^{\rm a}$ Sum of flux apyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as flux apyroxad

Green onion

A series of trials in green onions was conducted in the USA (Csinos, 2012-a). Three foliar broadcast applications of a 62.5 g/L EC formulation were made at a target rate of 200 g ai/ha and a target interval of 7 days using pressurised backpack sprayers. Duplicate treated samples were collected at 7 days after the last application, with additional samples being collected at intervals from 0 to 14 days at one site to generate decline data.
Location, Year (variety)	Applicatio n				Residues, mg/ equivalents	/kg parent			
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a
Pilot Point, TX, USA, 2011 (Walla Walla/Sweet Red/Sweet Jumbo/Red Candy Apple)	3 (7, 7)	210, 200, 210	320, 310, 330	7	0.24 (0.24, 0.23)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.24 (0.24, 0.23)
Yuba City, CA, USA, 2011 (White Bunching)	3 (6, 7)	200, 200, 200	280, 280, 280	7	0.56 (0.38, 0.73)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.56 (0.38, 0.73)
Yuba City, CA, USA, 2011 (White Bunching)	3 (7, 7)	200, 200, 200	280, 280, 280	0	0.33 (0.33, 0.33)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.33 (0.33, 0.33)
				3	0.33 (0.31, 0.34)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.33 (0.31, 0.34)
				7	0.29 (0.29, 0.29)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.29 (0.29, 0.29)
				10	0.25 (0.21, 0.28)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.25 (0.21, 0.28)
				14	0.36 (0.34, 0.37)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.36 (0.34, 0.37)

T_{a} 1.1 a 10	Desideres	of floor on the	word and its	mantal alita a in	
Table 18	Residues	οι παχάρνιο	xad and its	metabonites ir	green onions
					0

 $^{\rm a}$ Sum of flux apyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as flux apyroxad

Brassica vegetables

Broccoli

A series of trials in <u>broccoli</u> was conducted in the USA during 2011 and 2012 (Schreier, 2013-a). Three foliar broadcast applications of either a 62.5 g/L EC or a 300 g/L SC formulation of fluxapyroxad were made at target rates of 100 or 200 g ai/ha and an interval of 7 days. Duplicate broccoli head samples were collected at 0 and 3 days after the last application, with additional decline samples being collected from one site.

Table 19 Residues of fluxapyroxa	d and its r	metabolites in	broccoli heads
----------------------------------	-------------	----------------	----------------

Location, Year (variety)	Applic	ation				Residues, mg/kg parent equivalents				
	For m.	No. (RTI, days)	Rate, g ai/ ha	Spray volum e (L/ha)	DAL A	Fluxapyrox ad	M700F0 02	M700F0 08	M700F0 48	Total ^a
Lebanon, OK, USA, 2011 (Premium Crop)	62.5 EC	3 (7, 7)	100, 100, 98	320, 310, 300	0	1.5 (1.1, 1.9)	< 0.02 (< 0.02, < 0.02)	0.04 (0.03, 0.05)	0.12 (0.04, 0.19)	1.7 (1.2, 2.1)
					1	1.9 (1.7, 2.1)	< 0.02 (< 0.02, < 0.02)	0.09 (0.09, 0.08)	0.15 (0.15, 0.14)	2.1 (1.9, 2.4)
					3	$\frac{1.2}{0.99}$ (1.5,	< 0.02 (< 0.02, < 0.02)	0.09 (0.09, 0.08)	0.15 (0.16, 0.14)	$\frac{1.5}{(1.7, 1.2)}$
					5	0.98 (0.86, 1.1)	< 0.02 (< 0.02, < 0.02)	0.06 (0.06, 0.06)	0.16 (0.14, 0.18)	1.2 (1.1, 1.3)
					7	0.86 (0.85, 0.86)	< 0.02 (< 0.02, < 0.02)	0.05 (0.05, 0.05)	0.13 (0.17, 0.09)	1.0 (1.1, 1.0)
Lompoc, CA, USA, 2011 (Concord)	62.5 EC	3 (7, 7)	200, 200, 210	280, 280, 280	0	0.49 (0.53, 0.45)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.49 (0.53, 0.45)
					3	0.28 (0.28, 0.27)	< 0.02 (< 0.02, < 0.02)	0.01 (0.01, 0.01)	0.01 (< 0.01, 0.01)	0.29 (0.29, 0.29)
Lompoc, CA, USA, 2011 (Heritage)	62.5 EC	3 (7, 7)	200, 200, 210	280, 290, 280	0	0.46 (0.53, 0.39)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.46 (0.53, 0.39)
					3	<u>0.57</u> (0.44, 0.70)	< 0.02 (< 0.02, < 0.02)	0.03 (0.02, 0.03)	0.01 (0.01, 0.01)	$ $
Grants Pass, OR, USA, 2011 (Green Goliath)	62.5 EC	3 (7, 7)	100, 110, 100	280, 290, 280	0	0.45 (0.38, 0.52)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.45 (0.38, 0.52)
					3		< 0.02 (< 0.02, < 0.02)	0.02 (0.02, 0.01)	< 0.01 (< 0.01, < 0.01)	$ $
Guadalup e, CA, USA, 2012 (Heritage)	300 SC	3 (7, 7)	100, 100, 100	280, 280, 270	0	0.23 (0.22, 0.23)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.23 (0.22, 0.23)
					3	0.09 (0.12, 0.05)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.09 (0.12, 0.05)
Guadalup e, CA, USA, 2012 (Heritage)	300 SC	3 (7, 7)	100, 100, 100	290, 280, 290	0	0.09 (0.10, 0.08)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.09 (0.10, 0.08)
					3	<u>0.35</u> (0.28, 0.42)	< 0.02 (< 0.02, < 0.02)	0.01 (< 0.01, 0.01)	< 0.01 (< 0.01, < 0.01)	0.36 (0.28 0, 0.43)

Location, Year (variety)	Applic	eation				Residues, mg/kg parent equivalents				
	For m.	No. (RTI, days)	Rate, g ai/ ha	Spray volum e (L/ha)	DAL A	Fluxapyrox ad	M700F0 02	M700F0 08	M700F0 48	Total ^a
Santa Maria, CA, USA, 2012 (Patriot)	300 SC	3 (7, 7)	100, 100, 110	280, 280, 270	0	0.37 (0.47, 0.27)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.37 (0.47, 0.27)
					3	$\frac{0.17}{0.21}(0.12,$	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.17}{(0.12, 0.21)}$
Santa Maria, CA, USA, 2012 (Heritage)	300 SC	3 (7, 7)	100, 100, 100	280, 280, 280	0	0.49 (0.50, 0.48)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.49 (0.50, 0.48)
					3	0.10 (0.11, 0.09)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.10 (0.11, 0.09)

 $^{\rm a}$ Sum of flux apyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as flux apyroxad

Cabbage

A series of trials in <u>cabbage</u> was conducted in the USA during 2011 and 2012 (Schreier, 2013-a). Three foliar broadcast applications of either a 62.5 g/L EC (2011 trials) or a 300 g/L SC (2012 trials) formulation of fluxapyroxad were made at target rates of 100 or 200 g ai/ha and an interval of 7 days. Duplicate samples of cabbage heads (with and without wrapper leaves) were collected at 0 and 3 days after the last application, with additional decline samples being collected from one site.

Table 20	Residues	of fluxap	yroxad	and its	metabolites	in	cabbage
		1	~				0

Location,	Applicatio				Sample	Residues, mg/kg	parent			
Year (variety)	n					equivalents				
	No. (RTI,	Rate, g ai/h	Spray	DAL		Fluxapyroxad	M700	M700	M700	Total ^a
	days)	a	volume	А			F002	F008	F048	
			(L/ha)							
Germansville,	3 (7, 7)	100, 100,	310,	0	Heads	0.21 (0.20,	< 0.02	< 0.01	< 0.01	0.21
PA, USA,		100	310,		w.	0.21)	(< 0.02,	(< 0.01,	(< 0.01,	(0.22,
2011 (Blue			300		wrappe		< 0.02)	< 0.01)	< 0.01)	0.21)
Lagoon)					r leaves					
				3	Heads	<u>0.14</u> (0.14,	< 0.02	< 0.01	< 0.01	0.14
					w.	0.13)	(< 0.02,	(< 0.01,	(< 0.01,	(0.14,
					wrappe		< 0.02)	< 0.01)	< 0.01)	0.13)
					r leaves					
				0	Heads	0.04 (0.03,	< 0.02	< 0.01	< 0.01	0.04
					w/o	0.04)	(< 0.02,	(< 0.01,	(< 0.01,	(0.03,
					wrappe		< 0.02)	< 0.01)	< 0.01)	0.04)
					r leaves					
				3	Heads	0.04 (0.04,	< 0.02	< 0.01	< 0.01	0.04
					w/o	0.04)	(< 0.02,	(< 0.01,	(< 0.01,	(0.04,
					wrappe		< 0.02)	< 0.01)	< 0.01)	0.04)
					r leaves					
Sycamore,	3 (7, 7)	100, 100,	290,	0	Heads	0.14 (0.15,	< 0.02	< 0.01	< 0.01	0.14
GA, USA,		100	280,		w.	0.13)	(< 0.02,	(< 0.01,	(< 0.01,	(0.15,
2011 (Bravo)			280		wrappe		< 0.02)	< 0.01)	< 0.01)	0.13)
					r leaves					
				1	Heads	0.18 (0.16,	< 0.02	< 0.01	< 0.01	0.18

Fluxapyroxad

Location, Year (variety)	Applicatio n				Sample	Residues, mg/kg parent equivalents				
rour (rurroog)	No (RTI	Rate gai/h	Spray	DAL		Fluxapyroxad	M700	M700	M700	Total ^a
	days)	a	volume	A		Пихаруюлай	F002	F008	F048	Total
			(L/IIII)		W 7	0.10)	(< 0.02)	(< 0.01	(< 0.01)	(0.16
					w. wrappe	0.19)	< 0.02,	< 0.01)	< 0.01,	(0.10, 0.19)
				2	Handa	0.11 (0.12	< 0.02	< 0.01	< 0.01	0.11
				5	neads	0.11(0.12, 0.10)	< 0.02	< 0.01	< 0.01	(0.11)
					w.	0.10)	(< 0.02,	(< 0.01, < 0.01)	(< 0.01, < 0.01)	(0.12, 0.10)
					r loovos		< 0.02)	< 0.01)	< 0.01)	0.10)
				5	Haada	0.12 (0.12	< 0.02	< 0.01	0.01	0.14
				3	neaus	(0.15) (0.15, 0.12)	< 0.02	< 0.01	(0.01)	$\frac{0.14}{0.14}$
					w.	0.15)	(< 0.02,	(< 0.01, < 0.01)	(0.01, 0.01)	(0.14)
					r leaves		< 0.02)	< 0.01)	0.01)	0.14)
				7	Heads	0.12 (0.12,	< 0.02	< 0.01	0.01	0.13
					w.	0.12)	(< 0.02,	(< 0.01,	(0.01,	(0.13,
					wrappe	,	< 0.02)	< 0.01)	< 0.01)	0.12)
					r leaves					
				0	Heads	< 0.01 (< 0.01,	< 0.02	< 0.01	< 0.01	< 0.01
					w/o	< 0.01)	(< 0.02,	(< 0.01,	(< 0.01,	(< 0.01,
					wrappe		< 0.02)	< 0.01)	< 0.01)	< 0.01)
					r leaves					
				1	Heads	0.04 (0.05,	< 0.02	< 0.01	< 0.01	0.04
					w/o	0.03)	(< 0.02,	(< 0.01,	(< 0.01,	(0.05,
					wrappe		< 0.02)	< 0.01)	< 0.01)	0.03)
					r leaves					
				3	Heads	0.01 (0.01,	< 0.02	< 0.01	< 0.01	0.01
					w/o	0.01)	(< 0.02,	(< 0.01,	(< 0.01,	(0.01,
					wrappe		< 0.02)	< 0.01)	< 0.01)	0.01)
				_	r leaves					
				5	Heads	0.01 (0.01,	< 0.02	< 0.01	< 0.01	0.01
					W/O	< 0.01)	(< 0.02,	(< 0.01,	(< 0.01,	(0.01, 0.01)
					wrappe		< 0.02)	< 0.01)	< 0.01)	< 0.01)
				7	Hoods	0.01.(0.01	< 0.02	< 0.01	< 0.01	0.01
				/	w/o	0.01(0.01, 0.01)	< 0.02	< 0.01	< 0.01	(0.01)
					w/0	0.01)	(< 0.02,	(< 0.01, < 0.01)	(< 0.01, < 0.01)	(0.01, 0.01)
					r leaves		< 0.02)	< 0.01)	< 0.01)	0.01)
Belle Glade	3 (6.7)	100 100	280	0	Heads	0.15 (0.13	< 0.02	< 0.01	< 0.01	0.15
FL USA	5 (0, 7)	100, 100,	280	Ŭ	w	0.17)	< 0.02	< 0.01	(< 0.01)	(0.13
2011 (Bravo)		100	290		wrappe	0.17)	< 0.02	< 0.01	< 0.01	0.17)
2011 (D14/0)			_> 0		r leaves		(0.02)	(0.01)	(0.01)	0.11/)
				3	Heads	0.07 (0.09.	< 0.02	< 0.01	< 0.01	0.07
				-	w.	(0.05)	(< 0.02.	(< 0.01.	(< 0.01.	(0.09.
					wrappe	,	< 0.02)	< 0.01)	< 0.01)	0.05)
					r leaves		, í	, ,	, í	,
				0	Heads	0.02 (0.03,	< 0.02	< 0.01	< 0.01	0.02
					w/o	0.01)	(< 0.02,	(< 0.01,	(< 0.01,	(0.03,
					wrappe		< 0.02)	< 0.01)	< 0.01)	0.01)
					r leaves					
				3	Heads	< 0.01 (< 0.01,	< 0.02	< 0.01	< 0.01	< 0.01
					w/o	< 0.01)	(< 0.02,	(< 0.01,	(< 0.01,	(< 0.01,
					wrappe		< 0.02)	< 0.01)	< 0.01)	< 0.01)
					r leaves					
Deerfield,	3 (6, 7)	100, 100,	280,	0	Heads	0.39 (0.34,	< 0.02	< 0.01	< 0.01	0.39
MI, USA,		100	280,		W.	0.43)	(< 0.02,	(< 0.01,	(< 0.01,	(0.34,
2011 (Bravo)			280		wrappe		< 0.02)	< 0.01)	< 0.01)	0.43)
					r leaves	0.44.70.15	0.07			
				3	Heads	(0.11) (0.12,	< 0.02	< 0.01	< 0.01	$\frac{0.11}{0.12}$
					w.	0.09)	(< 0.02,	(< 0.01,	(< 0.01,	(0.12,
					wrappe		< 0.02)	< 0.01)	< 0.01)	0.09)
				0	r leaves	0.04 (0.04	< 0.02	< 0.01	< 0.01	0.04
				U	rieads	0.04 (0.04,	< 0.02	< 0.01	< 0.01	0.04

Location,	Applicatio				Sample	Residues, mg/kg	g parent			
Teal (vallety)	II No. (DTI	Data gai/h	Coroli	DAI		Fluxentroyed	M700	M700	M700	Total ^a
	days)	a	volume (L/ha)	A		Fluxapyloxau	F002	F008	F048	Total
					w/o wrappe r leaves	0.04)	(< 0.02, < 0.02)	(< 0.01, < 0.01)	(< 0.01, < 0.01)	(0.04, 0.04)
				3	Heads w/o wrappe	0.05 (0.04, 0.05)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.05</u> (0.04, 0.05)
Lebanon, OK, USA, 2011 (Copenhagen Market)	3 (7, 7)	100, 100, 100	310, 320, 310	0	Heads w. wrappe r leaves	1.5 (1.9, 1.1)	< 0.02 (< 0.02, < 0.02)	0.02 (0.02, 0.02)	0.02 (0.02, 0.02)	1.5 (1.9, 1.2)
,				3	Heads w. wrappe r leaves	<u>1.2</u> (1.2, 1.2)	< 0.02 (< 0.02, < 0.02)	0.02 (0.02, 0.02)	0.02 (0.02, 0.02)	$\frac{1.3}{1.3}(1.3,$
				0	Heads w/o wrappe r leaves	0.20 (0.18, 0.22)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.20 (0.18, 0.22)
				3	Heads w/o wrappe r leaves	0.07 (0.07, 0.07)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.07</u> (0.07, 0.07)
Guadalupe, 2 CA, USA, 2011 (Pennet)	3 (7, 7)	200, 200, 200	290, 280, 280	0	Heads w. wrappe r leaves	0.16 (0.13, 0.18)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.16 (0.13, 0.18)
				3	Heads w. wrappe r leaves	0.07 (0.07, 0.07)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.07 (0.07, 0.07)
				0	Heads w/o wrappe r leaves	0.03 (0.02, 0.03)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.03 (0.02, 0.03)
				3	Heads w/o wrappe r leaves	0.01 (0.01, 0.01)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.01 (0.01, 0.01)
Guadalupe, CA, USA, 2012 (Red Jewel)	3 (7, 7)	100, 100, 100	280, 280, 270	0	Heads w. wrappe r leaves	0.39 (0.35, 0.43)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.39 (0.35, 0.43)
				3	Heads w. wrappe r leaves	<u>0.22</u> (0.28, 0.16)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.22 (0.28, 0.16)
				0	Heads w/o wrappe r leaves	0.03 (0.03, 0.03)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.03 (0.03, 0.03)
				3	Heads w/o wrappe r leaves	0.04 (0.04, 0.04)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$ \begin{array}{r} \underline{0.04} \\ (0.04, \\ 0.04) \end{array} $

Residues were mostly undetectable in the untreated control samples, with the exception of two detections of parent compound below the LOQ

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

Fruiting vegetables, Cucurbits

Melons, except watermelon

A series of trials in <u>melons</u> (cantaloupe) was conducted in the USA (Csinos, 2012-b). Three foliar broadcast applications of a 62.5 g/L EC formulation of fluxapyroxad were made using pressurised backpack handheld sprayers at a target rate of 200 g ai/ha and a target interval of 7 days. Duplicated treated samples were collected on the day of the last application, with additional samples being collected at intervals up to 7 days at one site to generate decline data.

Location, Year (variety)	Applicatio n				Residues, mg/kg parent equivalents				
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a
Chula, GA, USA, 2011 (Minerva)	3 (7, 7)	200, 200, 200	280, 280, 280	0	<u>0.08</u> (0.08, 0.08)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.08</u> (0.08, 0.08)
Deerfield, MI, USA, 2011 (Edisto)	3 (6, 7)	200, 200, 200	290, 290, 290	0	<u>0.05</u> (0.05, 0.04)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.05</u> (0.05, 0.04)
Madill, OK, USA, 2011 (Halona F1)	3 (6, 7)	200, 200, 200	310, 310, 310	0	$\frac{0.24}{0.23}$ (0.25, 0.23)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.24</u> (0.25, 0.23)
Guadalupe, CA, USA, 2011 (Primo)	3 (7, 7)	200, 200, 200	250, 250, 240	0	<u>0.21</u> (0.18, 0.24)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.21</u> (0.18, 0.24)
Yuba City, CA, USA, 2011 (Honey Rock)	3 (7, 7)	200, 200, 200	280, 280, 280	0	<u>0.05</u> (0.10, < 0.002)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.05 (0.10, < 0.00 2)
Yuba City, CA, USA, 2011 (Honey Rock)	3 (7, 7)	200, 200, 210	280, 280, 290	0	0.03 (0.03, 0.03)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.03 (0.03, 0.03)
				1	0.03 (0.03, 0.03)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.03 (0.03, 0.03)
				3	0.03 (0.03, 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.03 (0.03, 0.02)
				6	0.03 (0.02, 0.03)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.03 (0.02, 0.03)
				8	0.03 (0.04, 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.03 (0.04, 0.02)

Table 21 Residues of fluxapyroxad and its metabolites in cantaloupe (US trials)

No residues were detected in the untreated control samples

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

A second series of trials was conducted in melons in Brazil (Guimaraes, 2010-a). Four foliar applications of an SC formulation (167 g/L fluxapyroxad and 333 g/L pyraclostrobin) were made at a target rate of 0.058 kg ai/ha fluxapyroxad + 0.117 kg ai/ha pyraclostrobin and a target interval of 7 days. Three trials were run as single point trials with sampling at 7 days after the last

application, and the other two were run to a reverse decline design, generating residues data for intervals of 0-28 days after the last application.

Location,	Applicatio				Residues, mg/kg parent equivalents					
Year	n									
(Vanety)	No. (RTI, days)	Rate, g ai/h a	Spray volume (L/ha)	DAL A	Fluxapy roxad	M700 F002	M700 F008	M700 F048	Total ^a	
Senador Canedo, Goias, Brazil, 2010 (Gaucho)	4 (7, 7, 7)	58, 58, 58, 58	400, 400, 400, 400	0	0.03	< 0.02	< 0.01	< 0.01	0.03	
				7	0.02	< 0.02	< 0.01	< 0.01	0.02	
				14	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
				21	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
				28	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
Ibipora, Parana, Brazil, 2010 (Louis)	4 (7, 7, 7)	58, 58, 58, 58	400, 400, 400, 400	0	0.09	< 0.02	< 0.01	< 0.01	0.09	
				7	0.02	< 0.02	< 0.01	< 0.01	0.02	
				14	0.03	< 0.01	< 0.01	< 0.01	0.03	
				21	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
				28	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
Santo Antonio de Posse, Sao Paolo, Brazil, 2010 (Sunrise)	4 (7, 7, 7)	58, 58, 58, 58	400, 400, 400, 400	7	0.04	< 0.02	< 0.01	< 0.01	0.04	
Mossoro, Rio Grande do Norte, Brazil, 2010 (Goldex)	4 (7, 7, 7)	58, 58, 58, 58	400, 400, 400, 400	7	0.04	< 0.02	< 0.01	< 0.01	0.04	
Assai, Parana, Brazil, 2010 (Louis)	4 (7, 7, 7)	58, 58, 58, 58	400, 400, 400, 400	7	0.05	< 0.02	< 0.01	< 0.01	0.05	

Table 22 Residues of fluxapyroxad and metabolites in melon (Brazilian trials)

No residues were detected in the untreated control samples

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

Cucumber

A series of trials in <u>cucumbers</u> was conducted in the USA (Csinos, 2012-b). Three foliar broadcast applications of a 62.5 g/L EC formulation of fluxapyroxad were made using pressurised backpack handheld sprayers at a target rate of 200 g ai/ha and a target interval of 7 days. Duplicate treated samples were collected on the day of the last application, with additional samples being collected at intervals up to 7 days at one site to generate decline data.

Table 23 Residues of fluxapyroxad and its metabolites in cucumber

Location,	Applicatio		Residues, mg/kg parent		
Year	n		equivalents		
(variety)			_		

	No. (RTI, days)	Rate, g ai/ ha	Spray volume	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a
Sycamore, GA, USA, 2011 (Straight Eight)	3 (7, 7)	200, 200, 200	280, 280, 280, 280	0	<u>0.17</u> (0.20, 0.13)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.17</u> (0.20, 0.13)
				1	0.09 (0.10, 0.08)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.09 (0.10, 0.08)
				3	0.09 (0.09, 0.09)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.09 (0.09, 0.09)
				5	0.07 (0.07, 0.07)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.07 (0.07, 0.07)
				7	0.07 (0.09, 0.05)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.07 (0.09, 0.05)
Sycamore, GA, USA, 2011 (Impact)	3 (7, 7)	200, 200, 200	290, 280, 280	0	0.08 (0.10, 0.06)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.08 (0.10, 0.06)
Gainesville, FL, USA, 2011 (Impact)	3 (7, 7)	200, 200, 200	280, 280, 280	0	$\frac{0.03}{0.03}(0.02, 0.03)$	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.03</u> (0.02, 0.03)
Deerfield, MI, USA, 2011 (Alibi F1)	3 (7, 6)	200, 200, 200	280, 290, 290	0	0.16 (0.12, 0.19)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.16 (0.12, 0.19)
Deerfield, MI, USA, 2011 (Northern Pickling)	3 (7, 6)	200, 200, 200	280, 290, 290	0	<u>0.17</u> (0.18, 0.16)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.17</u> (0.18, 0.16)
Madill, OK, USA, 2011 (Alibi F1)	3 (6, 7)	210, 210, 210	310, 310, 320	0	$\frac{0.24}{0.22}(0.25, $	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$ $

 $^{\rm a}$ Sum of flux apyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as flux apyroxad

Squash, summer

A series of trials in <u>summer squash</u> was conducted in the USA (Csinos, 2012-b). Three foliar broadcast applications of a 62.5 g/L EC formulation of fluxapyroxad were made using pressurised backpack handheld sprayers at a target rate of 200 g ai/ha and a target interval of 7 days. Duplicate treated samples were collected on the day of the last application, with additional samples being collected at intervals up to 7 days at one site to generate decline data.

Location, Year (variety)	Applicatio n				Residues, mg/ equivalents	/kg parent			
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a
Germansvill e, PA, USA, 2011 (Super Pik)	3 (8, 6)	210, 210, 210	310, 310, 300	0	<u>0.14</u> (0.11, 0.16)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.14</u> (0.11, 0.16)
Sycamore, GA, USA, 2011 (Gold Star)	3 (7, 7)	200, 200, 200	280, 290, 280	0	<u>0.11</u> (0.13, 0.09)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.11</u> (0.13, 0.09)
				1	0.09 (0.08, 0.09)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.09 (0.08, 0.09)
				3	0.07 (0.08, 0.06)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.07 (0.08, 0.06)
				5	0.07 (0.06, 0.07)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.07 (0.06, 0.07)
				7	0.03 (0.03, 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.03 (0.03, 0.02)
Gainesville, FL, USA, 2011 (Gold Star)	3 (7, 7)	200, 200, 200	280, 280, 280	0	<u>0.05</u> (0.05, 0.05)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.05</u> (0.05, 0.05)
Deerfield, MI, USA, 2011 (Gold Star)	3 (7, 6)	200, 200, 200	280, 290, 290	0	<u>0.07</u> (0.05, 0.08)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.07</u> (0.05, 0.08)
Yuba City, CA, USA, 2011 (Yellow Summer Crookneck)	3 (7, 7)	220, 220, 220	280, 280, 280	0	$\frac{0.10}{0.12}(0.07,$	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.10</u> (0.07, 0.12)

able 24 Residues of fluxapyroxad and its metabolites in summer squase	Гable	24	Residues	of	fluxapy	roxad	and	its	metaboli	tes i	in	summer	sq	uas	sh
---	-------	----	----------	----	---------	-------	-----	-----	----------	-------	----	--------	----	-----	----

,

No residues were detected in the untreated control samples

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

Watermelon

Trials in <u>watermelon</u> were conducted in Brazil (Guimaraes, 2010-b). Four applications of an SC formulation containing 167 g/L fluxapyroxad and 333 g/L pyraclostrobin were made at a target rate of 0.058 kg ai/ha fluxapyroxad + 0.117 kg ai/ha pyraclostrobin and an interval of days. Two single point residue trials, with scheduled sampling at 7 days after the last application were conducted along with two reverse decline design trials, giving decline data from 0 to 10 days after the last application.

Location, Year (variety)	Applicati on				Residue	s, mg/kg parent	equivalent	S		
	No. (RTI, days)	Rate, g ai/ ha	Spray volum e (L/ha)	DAL A	Sampl e	Fluxapyrox ad	M700 F002	M700 F008	M70 0 F048	Total ^a

Fluxapyroxad

Location, Year (variety)	Applicati on				Residue	s, mg/kg parent	equivalent	S		
	No. (RTI, days)	Rate, g ai/ ha	Spray volum e (L/ha)	DAL A	Sampl e	Fluxapyrox ad	M700 F002	M700 F008	M70 0 F048	Total ^a
Jaboticabal, Sao Paolo, Brazil, 2011 (Top Gun)	4 (7, 7, 7)	58, 58, 58, 58	400, 400, 400, 400	0	Peel	0.02	< 0.02	< 0.01	< 0.0	0.02
				0	Pulp	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				0	Whole fruit	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				7	Peel	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				7	Pulp	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				7	Whole fruit	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				10	Peel	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				10	Pulp	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
				10	Whole fruit	< 0.01	< 0.02	< 0.01	< 0.0 1	< 0.01
San Antonio de Posse, Sao Paolo, Brazil, 2010 (Rapid Fire)	4 (6-8)	58, 58, 58, 58	400, 400, 400, 400	0	Whole fruit	0.10	< 0.02	< 0.01	< 0.0	0.10
				7	Whole fruit	0.06	< 0.02	< 0.01	< 0.0 1	0.06
				10	Whole fruit	0.07	< 0.02	< 0.01	< 0.0 1	0.07
Ponta Grossa, Parana, Brazil, 2010 (Kodama)	4 (7, 7, 7)	58, 58, 58, 58	400, 400, 400, 400	7	Whole fruit	0.05	< 0.02	< 0.01	< 0.0	0.05
Senador Canedo, Goias, Brazil, 2010 (H. Elisa)	4 (6, 8, 7)	58, 58, 58, 58	400, 400, 400, 400	7	Whole fruit	0.06	< 0.02	< 0.01	< 0.0	0.06

Residues were mostly undetectable in the untreated control samples, except for one detection of parent compound at < LOQ

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

Leafy vegetables

Lettuce, head

A series of trials in <u>head lettuce</u> was conducted in the USA (Schreier, 2013-b). Three foliar broadcast applications of a 62.5 g/L EC or a 300 g/L SC formulation were made at a target rate of 200 g ai/ha

and a target interval of 7 days using pressurised backpack sprayers. Duplicate treated samples were collected 0 and 1 day after the last application, with additional decline data samples being collected at one site.

Table 20 Kest	Table 20 Residues of fluxapyroxad and its metabolites in head lettuce (heads with wrapper leaves)								
Location, Year (variety)	Application					Residues, mg/k	g parent eq	uivalents	
	Formulation	No.	Rate,	Spray	DALA	Fluxapyroxad	M700	M700	Total
		(RTI,	g	volume			F008	F048	а
days) ai/ha (L/ha)									
Sucomoro CA	200 80	2(77)	200	280 200	0	0.45 (0.46	< 0.01	< 0.01	0.45

Table 26 Residues of fluxapyroxad	and its metabolites in head le	ettuce (heads with y	wrapper leaves)
12			11 /

		(RTI,	g	volume			F008	F048	а
		days)	ai/ha	(L/ha)					
Sycamore, GA,	300 SC	3 (7, 7)	200,	280, 290,	0	0.45 (0.46,	< 0.01	< 0.01	0.45
USA, 2011			200,	280		0.43)	(< 0.01,	(< 0.01,	(0.46,
(Iceberg)			200				< 0.01)	< 0.01)	0.43)
					1	<u>0.51</u> (0.56,	< 0.01	< 0.01	<u>0.51</u>
						0.45)	(< 0.01,	(< 0.01,	(0.56,
							< 0.01)	< 0.01)	0.45)
Belle Glade,	300 SC	3 (6, 7)	200,	290, 280,	0	0.33 (0.38,	< 0.01	< 0.01	0.33
FL, USA, 2011			200,	280		0.28)	(< 0.01,	(< 0.01,	(0.38, 0.29)
(Iceberg)			200		1	0.14 (0.10	< 0.01)	< 0.01)	0.28)
					1	$\frac{0.14}{0.18}$ (0.10,	< 0.01	< 0.01	$\frac{0.14}{0.10}$
						0.18)	(< 0.01, < 0.01)	(< 0.01, < 0.01)	(0.10, 0.18)
Cuadaluma	62.5 EC	2(7,7)	200	200 200	0	17(10, 15)	< 0.01	< 0.01	0.18)
Guadalupe,	02.3 EC	5(1,1)	200,	280, 280,	0	1.7 (1.9, 1.3)	< 0.01	< 0.01	1.7
2011			200,	290			(< 0.01, < 0.01)	(< 0.01, < 0.01)	(1.9, 1.5)
(Escalade)			200				< 0.01)	< 0.01)	1.5)
					1	1 1 (0 74	< 0.01	< 0.01	11
					1	1.1 (0.74,	(< 0.01	(< 0.01	(0.74)
						1.5)	< 0.01)	< 0.01)	1.5)
Guadalupe.	62.5 EC	3(7,7)	200	280, 280,	0	3.5 (3.4, 3.6)	< 0.01	< 0.01	3.5
CA. USA.	0210 20	0(1,1)	200.	290	Ŭ	010 (011, 010)	(< 0.01.	(< 0.01.	(3.4.
2011			200				< 0.01)	< 0.01)	3.6)
(Osoflaco)							, , , ,	, , ,	/
(Usunacu)									
(Osonaco)					1	<u>1.9</u> (2.0, 1.9)	< 0.01	< 0.01	<u>1.9</u>
(Osoliaco)					1	<u>1.9</u> (2.0, 1.9)	< 0.01 (< 0.01,	< 0.01 (< 0.01,	<u>1.9</u> (2.0,
					1	<u>1.9</u> (2.0, 1.9)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>1.9</u> (2.0, 1.9)
Lompoc, CA,	62.5 EC	3 (7, 7)	200,	280, 280,	1 0	<u>1.9</u> (2.0, 1.9) 0.79 (0.75,	<0.01 (< 0.01, < 0.01) < 0.01	< 0.01 (< 0.01, < 0.01) < 0.01	<u>1.9</u> (2.0, 1.9) 0.79
Lompoc, CA, USA, 2011	62.5 EC	3 (7, 7)	200, 200,	280, 280, 280	1 0	<u>1.9</u> (2.0, 1.9) 0.79 (0.75, 0.82)	< 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01,	< 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01,	<u>1.9</u> (2.0, 1.9) 0.79 (0.75,
Lompoc, CA, USA, 2011 (Vision)	62.5 EC	3 (7, 7)	200, 200, 200	280, 280, 280	1 0	<u>1.9</u> (2.0, 1.9) 0.79 (0.75, 0.82)	< 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01)	<u>1.9</u> (2.0, 1.9) 0.79 (0.75, 0.82)
Lompoc, CA, USA, 2011 (Vision)	62.5 EC	3 (7, 7)	200, 200, 200	280, 280, 280	1 0 1	<u>1.9</u> (2.0, 1.9) 0.79 (0.75, 0.82) <u>0.47</u> (0.38,	<0.01 (<0.01, <0.01) <0.01 (<0.01, <0.01) <0.01	< 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01	<u>1.9</u> (2.0, 1.9) 0.79 (0.75, 0.82) <u>0.47</u>
Lompoc, CA, USA, 2011 (Vision)	62.5 EC	3 (7, 7)	200, 200, 200	280, 280, 280	1 0 1	$ \underbrace{\frac{1.9}{0.79} (2.0, 1.9)}_{0.79 (0.75, 0.82)} \underbrace{\frac{0.47}{0.55} (0.38, 0.55)}_{0.55} $	<0.01 (<0.01, <0.01) <0.01 (<0.01, <0.01) <0.01 (<0.01,	< 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01,	$ \begin{array}{r} \frac{1.9}{(2.0, \\ 1.9)} \\ 0.79 \\ (0.75, \\ 0.82) \\ \underline{0.47} \\ (0.38, \\ 0.38, \\ 0.38, \\ 0.38, \\ 0.38, \\ 0.38, \\ 0.3$
Lompoc, CA, USA, 2011 (Vision)	62.5 EC	3 (7, 7)	200, 200, 200	280, 280, 280	1 0 1	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, 0.82) \\ \underline{0.47} (0.38, 0.55) \\ \underline{0.47} (0.38, 0.55) \end{array} $	$\begin{array}{c} < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01, \\ < 0.01, \\ < 0.01, \\ < 0.01, \\ \end{array}$	< 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01, < 0.01, < 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01, < 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01,	$ \begin{array}{r} \frac{1.9}{(2.0, \\ 1.9)} \\ 0.79 \\ (0.75, \\ 0.82) \\ \underline{0.47} \\ (0.38, \\ 0.55) \\ \hline $
Lompoc, CA, USA, 2011 (Vision)	62.5 EC 62.5 EC	3 (7, 7) 3 (7, 7)	200, 200, 200	280, 280, 280 280, 280, 280, 280,	1 0 1 0	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, 0.82) \\ \underline{0.47} (0.38, 0.55) \\ 2.6 (2.6, 2.7) \\ \end{array} $	$\begin{array}{c} < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \end{array}$	$ \begin{array}{c} < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ \end{array} $	$ \begin{array}{r} \frac{1.9}{(2.0, \\ 1.9)} \\ 0.79 \\ (0.75, \\ 0.82) \\ \underline{0.47} \\ (0.38, \\ 0.55) \\ 2.7 \\ 2.7 \\ (0.55) \\ 2.7 \\ (0.55) \\ 2.7 \\ (0.55) \\ (0.55) \\ (0.55) \\ $
Lompoc, CA, USA, 2011 (Vision) Orcutt, CA, USA, 2011	62.5 EC 62.5 EC	3 (7, 7) 3 (7, 7)	200, 200, 200 200 200, 200, 200,	280, 280, 280 280 280, 280, 280, 280,	1 0 1 0	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, 0.82) \\ \underline{0.47} (0.38, 0.55) \\ 2.6 (2.6, 2.7) \end{array} $	$\begin{array}{c} < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ (< 0.01, \\ < 0.01) \\ \end{array}$	< 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (<	$ \begin{array}{r} \frac{1.9}{(2.0, \\ 1.9)} \\ 0.79 \\ (0.75, \\ 0.82) \\ \underline{0.47} \\ (0.38, \\ 0.55) \\ 2.7 \\ (2.6, \\ 2.7) \\ (2.6, \\ 2.7) \\ \end{array} $
Lompoc, CA, USA, 2011 (Vision) Orcutt, CA, USA, 2011 (Quest)	62.5 EC 62.5 EC	3 (7, 7) 3 (7, 7)	200, 200, 200 200 200, 200, 200,	280, 280, 280 280, 280, 280, 280, 280	1 0 1 0	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, 0.82) \\ \underline{0.47} (0.38, 0.55) \\ 2.6 (2.6, 2.7) \\ 2.0 (10, 2.2) \\ \end{array} $	$\begin{array}{c} < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01, \\ < 0.01, \\ < 0.01 \\ (< 0.01, \\ < 0.01) \end{array}$	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01, < 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01	$ \begin{array}{r} \frac{1.9}{(2.0, \\ 1.9)} \\ 0.79 \\ (0.75, \\ 0.82) \\ \underline{0.47} \\ (0.38, \\ 0.55) \\ 2.7 \\ (2.6, \\ 2.7) \\ 2.0 \end{array} $
Lompoc, CA, USA, 2011 (Vision) Orcutt, CA, USA, 2011 (Quest)	62.5 EC 62.5 EC	3 (7, 7) 3 (7, 7)	200, 200, 200 200 200, 200, 200,	280, 280, 280 280, 280, 280, 280, 280	1 0 1 0	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, 0.82) \\ \underline{0.47} (0.38, 0.55) \\ 2.6 (2.6, 2.7) \\ 2.0 (1.9, 2.0) \end{array} $	< 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) < 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)	$ \begin{array}{r} \frac{1.9}{(2.0, \\ 1.9)} \\ 0.79 \\ (0.75, \\ 0.82) \\ \underline{0.47} \\ (0.38, \\ 0.55) \\ 2.7 \\ (2.6, \\ 2.7) \\ 2.0 \\ (1.0) \end{array} $
Lompoc, CA, USA, 2011 (Vision) Orcutt, CA, USA, 2011 (Quest)	62.5 EC 62.5 EC	3 (7, 7) 3 (7, 7)	200, 200, 200 200 200, 200, 200, 200	280, 280, 280 280, 280, 280, 280, 280	1 0 1 0	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, 0.82) \\ \underline{0.47} (0.38, 0.55) \\ 2.6 (2.6, 2.7) \\ 2.0 (1.9, 2.0) \end{array} $	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)	$ \begin{array}{r} \frac{1.9}{(2.0, \\ 1.9)} \\ 0.79 \\ (0.75, \\ 0.82) \\ \hline \frac{0.47}{(0.38, \\ 0.55)} \\ 2.7 \\ (2.6, \\ 2.7) \\ 2.0 \\ (1.9, \\ 2.0) \end{array} $
Lompoc, CA, USA, 2011 (Vision) Orcutt, CA, USA, 2011 (Quest)	62.5 EC 62.5 EC	3 (7, 7) 3 (7, 7)	200, 200, 200 200, 200, 200, 200	280, 280, 280 280, 280, 280, 280, 280	1 0 1 0	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, 0.82) \\ \underline{0.47} (0.38, 0.55) \\ 2.6 (2.6, 2.7) \\ 2.0 (1.9, 2.0) \\ 0.54 (0.48) \end{array} $	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.	$ \begin{array}{r} \frac{1.9}{(2.0, \\ 1.9)} \\ 0.79 \\ (0.75, \\ 0.82) \\ \hline 0.47 \\ (0.38, \\ 0.55) \\ 2.7 \\ (2.6, \\ 2.7) \\ 2.0 \\ (1.9, \\ 2.0) \\ 0.54 \end{array} $
Lompoc, CA, USA, 2011 (Vision) Orcutt, CA, USA, 2011 (Quest)	62.5 EC 62.5 EC	3 (7, 7) 3 (7, 7)	200, 200, 200 200, 200, 200, 200,	280, 280, 280 280, 280, 280, 280, 280	1 0 1 0 1 3	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, 0.82) \\ \underline{0.47} (0.38, 0.55) \\ 2.6 (2.6, 2.7) \\ 2.0 (1.9, 2.0) \\ 0.54 (0.48, 0.60) \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.51 \\ 0.51 \\ 0.52 \\ 0.52 \\ 0.54 \\ 0.50 \\ 0.50 \\ 0.50 \\ 0.51 \\ 0.52 \\ 0.52 \\ 0.52 \\ 0.52 \\ 0.54 \\ 0.54 \\ 0.55 \\ 0.51 \\ 0.52 \\ $	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (<	< 0.01 (< 0.01, < 0.01) (< 0.01, (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (<	$\begin{array}{r} \underline{1.9} \\ (2.0, \\ 1.9) \\ 0.79 \\ (0.75, \\ 0.82) \\ \hline 0.47 \\ (0.38, \\ 0.55) \\ \hline 2.7 \\ (2.6, \\ 2.7) \\ \hline 2.0 \\ (1.9, \\ 2.0) \\ \hline 0.54 \\ (0.48) \end{array}$
Lompoc, CA, USA, 2011 (Vision) Orcutt, CA, USA, 2011 (Quest)	62.5 EC 62.5 EC	3 (7, 7) 3 (7, 7)	200, 200, 200 200, 200, 200, 200	280, 280, 280 280, 280, 280, 280, 280	1 0 1 0 1 3	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, \\ 0.82) \\ \underline{0.47} (0.38, \\ 0.55) \\ 2.6 (2.6, 2.7) \\ 2.0 (1.9, 2.0) \\ 0.54 (0.48, \\ 0.60) \\ \end{array} $	$\begin{array}{c} < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \end{array}$	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.	$\begin{array}{r} \underline{1.9} \\ (2.0, \\ 1.9) \\ 0.79 \\ (0.75, \\ 0.82) \\ \hline 0.47 \\ (0.38, \\ 0.55) \\ \hline 2.7 \\ (2.6, \\ 2.7) \\ \hline 2.0 \\ (1.9, \\ 2.0) \\ \hline 0.54 \\ (0.48, \\ 0.60) \\ \end{array}$
Lompoc, CA, USA, 2011 (Vision) Orcutt, CA, USA, 2011 (Quest)	62.5 EC 62.5 EC	3 (7, 7) 3 (7, 7)	200, 200, 200 200, 200, 200, 200	280, 280, 280 280, 280, 280, 280, 280	1 0 1 0 1 3	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, 0.82) \\ \underline{0.47} (0.38, 0.55) \\ 2.6 (2.6, 2.7) \\ 2.0 (1.9, 2.0) \\ 0.54 (0.48, 0.60) \\ 0.66 (0.46) \\ \end{array} $	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01	$\begin{array}{r} \underline{1.9} \\ (2.0, \\ 1.9) \\ 0.79 \\ (0.75, \\ 0.82) \\ \hline 0.47 \\ (0.38, \\ 0.55) \\ 2.7 \\ (2.6, \\ 2.7) \\ 2.0 \\ (1.9, \\ 2.0) \\ 0.54 \\ (0.48, \\ 0.60) \\ 0.66 \end{array}$
Lompoc, CA, USA, 2011 (Vision) Orcutt, CA, USA, 2011 (Quest)	62.5 EC 62.5 EC	3 (7, 7) 3 (7, 7)	200, 200, 200 200, 200, 200, 200	280, 280, 280 280, 280, 280, 280, 280	1 0 1 0 1 3 5	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, 0.82) \\ 0.82) \\ \underline{0.47} (0.38, 0.55) \\ 2.6 (2.6, 2.7) \\ 2.0 (1.9, 2.0) \\ 0.54 (0.48, 0.60) \\ \underline{0.66} (0.46, 0.86) \\ \underline{0.86} \\ \end{array} $	$< 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01, < 0.01 (< 0.01 (< 0.01) < 0.01 (< 0.01 (< 0.01) < 0.01 (< 0.01 (< 0.01) < 0.01 (< 0.01 (< 0.01) < 0.01 (< 0.01 (< 0.01) (< 0.01 (< 0.01) (< 0.01 (< 0.01) (< 0.01 (< 0.01) (< 0.01 (< 0.01 (< 0.01) (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (< 0.01 (<	$\begin{array}{r} \underline{1.9} \\ (2.0, \\ 1.9) \\ 0.79 \\ (0.75, \\ 0.82) \\ \hline 0.47 \\ (0.38, \\ 0.55) \\ 2.7 \\ (2.6, \\ 2.7) \\ 2.0 \\ (1.9, \\ 2.0) \\ 0.54 \\ (0.48, \\ 0.60) \\ \hline 0.66 \\ (0.46) \\ \hline \end{array}$
Lompoc, CA, USA, 2011 (Vision) Orcutt, CA, USA, 2011 (Quest)	62.5 EC 62.5 EC	3 (7, 7)	200, 200, 200 200, 200, 200, 200	280, 280, 280 280, 280, 280, 280, 280	1 0 1 0 1 3 5	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, \\ 0.82) \\ \underline{0.47} (0.38, \\ 0.55) \\ 2.6 (2.6, 2.7) \\ 2.0 (1.9, 2.0) \\ 0.54 (0.48, \\ 0.60) \\ \underline{0.66} (0.46, \\ 0.86) \\ \end{array} $	$\begin{array}{c} < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \\ < 0.01 \\ (< 0.01, \\ < 0.01) \end{array}$	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (<	$\begin{array}{r} \underline{1.9} \\ (2.0, \\ 1.9) \\ 0.79 \\ (0.75, \\ 0.82) \\ \hline 0.47 \\ (0.38, \\ 0.55) \\ 2.7 \\ (2.6, \\ 2.7) \\ 2.0 \\ (1.9, \\ 2.0) \\ \hline 0.54 \\ (0.48, \\ 0.60) \\ \hline 0.66 \\ (0.46, \\ 0.86) \\ \hline \end{array}$
Lompoc, CA, USA, 2011 (Vision) Orcutt, CA, USA, 2011 (Quest)	62.5 EC 62.5 EC	3 (7, 7)	200, 200, 200 200, 200, 200, 200	280, 280, 280 280, 280, 280, 280, 280	1 0 1 0 1 3 5	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, \\ 0.82) \\ \underline{0.47} (0.38, \\ 0.55) \\ 2.6 (2.6, 2.7) \\ 2.0 (1.9, 2.0) \\ 0.54 (0.48, \\ 0.60) \\ \underline{0.66} (0.46, \\ 0.86) \\ 0.28 (0.15) \\ \end{array} $	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)	$\begin{array}{r} \underline{1.9} \\ (2.0, \\ 1.9) \\ 0.79 \\ (0.75, \\ 0.82) \\ \hline 0.47 \\ (0.38, \\ 0.55) \\ 2.7 \\ (2.6, \\ 2.7) \\ 2.0 \\ (1.9, \\ 2.0) \\ \hline 0.54 \\ (0.48, \\ 0.60) \\ \hline \underline{0.66} \\ (0.46, \\ 0.86) \\ 0.28 \end{array}$
Lompoc, CA, USA, 2011 (Vision) Orcutt, CA, USA, 2011 (Quest)	62.5 EC 62.5 EC	3 (7, 7)	200, 200, 200 200, 200, 200, 200	280, 280, 280 280, 280, 280, 280, 280	1 0 1 0 1 3 5 7	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, \\ 0.82) \\ \underline{0.47} (0.38, \\ 0.55) \\ 2.6 (2.6, 2.7) \\ 2.0 (1.9, 2.0) \\ \underline{0.54} (0.48, \\ 0.60) \\ \underline{0.66} (0.46, \\ 0.86) \\ 0.28 (0.15, \\ 0.40) \\ \end{array} $	$< 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 $	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) ($\begin{array}{r} \underline{1.9} \\ (2.0, \\ 1.9) \\ 0.79 \\ (0.75, \\ 0.82) \\ \hline 0.47 \\ (0.38, \\ 0.55) \\ 2.7 \\ (2.6, \\ 2.7) \\ 2.0 \\ (1.9, \\ 2.0) \\ \hline 0.54 \\ (0.48, \\ 0.60) \\ \hline \underline{0.66} \\ (0.46, \\ 0.86) \\ \hline 0.28 \\ (0.15 \\ \hline \end{array}$
Lompoc, CA, USA, 2011 (Vision) Orcutt, CA, USA, 2011 (Quest)	62.5 EC 62.5 EC	3 (7, 7)	200, 200, 200 200, 200, 200, 200	280, 280, 280 280, 280, 280, 280, 280	1 0 1 0 1 3 5 7	$ \begin{array}{r} \underline{1.9} (2.0, 1.9) \\ 0.79 (0.75, \\ 0.82) \\ \underline{0.47} (0.38, \\ 0.55) \\ 2.6 (2.6, 2.7) \\ 2.0 (1.9, 2.0) \\ \underline{0.54} (0.48, \\ 0.60) \\ \underline{0.66} (0.46, \\ 0.86) \\ 0.28 (0.15, \\ 0.40) \\ \end{array} $	$< 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ < 0.01 \\ (< 0.01, < 0.01) \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\$	< 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01 (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01, < 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.0	$\begin{array}{c} \underline{1.9} \\ (2.0, \\ 1.9) \\ 0.79 \\ (0.75, \\ 0.82) \\ \hline 0.47 \\ (0.38, \\ 0.55) \\ 2.7 \\ (2.6, \\ 2.7) \\ 2.0 \\ (1.9, \\ 2.0) \\ \hline 0.54 \\ (0.48, \\ 0.60) \\ \hline 0.54 \\ (0.48, \\ 0.60) \\ \hline 0.66 \\ (0.46, \\ 0.86) \\ \hline 0.28 \\ (0.15, \\ 0.40) \\ \end{array}$

No residues were detected in the untreated control samples

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

Lettuce, leaf

A series of trials in <u>leafy lettuce</u> was conducted in the USA (Schreier, 2013-b). Three foliar broadcast applications of a 300 g/L SC formulation were made using pressurised backpack sprayers at a target rate of 200 g ai/ha and a target interval of 7 days. Duplicate treated samples were collected at 0 and 1 day after the last application with additional decline data samples being collected at a single site.

Table 27 Residues	of fluxapyroxad	and its metabolites	s in leafy lettuce

Location, Year (variety)	Application					Residues, mg/k	kg parent eq	uivalents	
	Formulatio n	No. (RTI, days)	Rate, g ai/ha	Spray volume	DAL A	Fluxapyroxa d	M700 F008	M700 F048	Total ^a
Sycamore, GA, USA, 2011 (Romaine)	300 SC	3 (7, 7)	200, 200, 200	280, 280, 280	0	9.4 (9.2, 9.5)	0.06 (0.05, 0.07)	< 0.01 (< 0.01, < 0.01)	9.4 (9.3, 9.6)
					1	6.2 (6.5, 5.9)	0.04 (0.05, 0.03)	< 0.01 (,0.001, < 0.01)	6.2 (6.5, 5.9)
Belle Glade, FL, USA, 2011 (Romaine)	300 SC	3 (6, 7)	200, 200, 200	290, 280, 280	0	4.0 (3.8, 4.1)	0.11 (0.10, 0.12)	< 0.01 (< 0.01, < 0.01)	4.1 (3.9, 4.3)
					1	3.3 (4.2, 2.4)	0.10 (0.11, 0.08)	< 0.01 (< 0.01, < 0.01)	3.4 (4.3, 2.5)
Santa Maria, CA, USA, 2012 (Red Tide)	300 SC	3 (7, 7)	200, 200,20 0	280, 280, 270	0	4.3 (4.4, 4.3)	0.04 (0.04, 0.04)	< 0.01 (< 0.01, < 0.01)	4.4 (4.4, 4.4)
					1	3.5 (2.8, 4.2)	0.04 (0.04, 0.04)	< 0.01 (< 0.01, < 0.01)	3.5 (2.8, 4.3)
Santa Maria, CA, USA, 2012 (Greenstar)	300 SC	3 (7, 7)	200, 200, 200	280, 280, 270	0	4.5 (4.1, 4.8)	0.02 (0.02, 0.02)	< 0.01 (< 0.01, < 0.01)	4.5 (4.1, 4.8)
					1	4.4 (4.9, 4.0)	0.02 (0.02, 0.02)	< 0.01 (< 0.01, < 0.01)	4.4 (4.9, 4.0)
Guadalupe, CA, USA, 2012 (Berghams Green)	300 SC	3 (7, 7)	200, 200, 210	270, 280, 300	0	3.2 (3.4, 3.0)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	3.2 (3.4, 3.0)
					1	2.7 (2.7, 2.6)	0.01 (0.01, 0.01)	< 0.01 (< 0.01, < 0.01)	2.7 (2.7, 2.7)
					3	0.44 (0.44, 0.44)	0.02 (0.01, 0.02)	< 0.01 (< 0.01, < 0.01)	0.46 (0.45 , 0.46)
					5	0.33 (0.35, 0.31)	0.02 (0.02, 0.01)	< 0.01 (< 0.01, < 0.01)	0.35 (0.37 , 0.32)
					7	0.24 (0.26, 0.22)	0.02 (0.01, 0.02)	< 0.01 (< 0.01, < 0.01)	0.26 (0.27 , 0.24)
Guadalupe, CA, USA, 2012 (Green Thunder)	300 SC	3 (6, 7)	210, 200, 200	280, 270, 270	0	2.1 (2.2, 2.1)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	2.1 (2.2, 2.1)
					1	2.0 (2.0, 1.9)	<0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	2.0 (2.0, 1.9)

Residues were generally undetectable in the untreated control samples, apart from a single detection of parent compound at a level < LOQ

 $^{\rm a}$ Sum of flux apyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as flux apyroxad

Mustard greens

A series of trials in <u>mustard greens</u> was conducted in the USA during 2011 (Schreier, 2013-a). Three foliar broadcast applications of a 62.5 g/L EC formulation of fluxapyroxad were made at target rates of 100 g ai/ha and an interval of 7 days. Duplicate treated leaves samples were collected at 0 and 3 days after the last application, with additional decline samples being collected from one site.

Table 28 Residues	of fluxapyroxad	and its metabolites	in mustard greens leaves
-------------------	-----------------	---------------------	--------------------------

Location, Year (variety)	Applicatio n				Residues, mg/ equivalents	kg parent			
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F00 8	M700F04 8	Total ^a
Sycamore, GA, USA, 2011 (Savanna)	3 (7, 7)	100, 100, 100	280, 290, 280	0	4.5 (4.8, 4.3)	< 0.02 (< 0.02, < 0.02)	0.27 (0.28, 0.26)	0.64 (0.65, 0.63)	5.5 (5.7, 5.3)
				1	2.7 (3.1, 2.4)	<0.02 (< 0.02, < 0.02)	0.29 (0.28, 0.30)	0.64 (0.75, 0.53)	3.7 (4.1, 3.2)
				3	$\frac{1.7}{1.6}$ (1.8,	< 0.02 (< 0.02, < 0.02)	0.42 (0.41, 0.43)	0.96 (0.90, 1.0)	$\frac{3.1}{(3.1, 3.1)}$
				5	1.0 (1.0, 0.95	< 0.02 (< 0.02, < 0.02)	0.30 (0.33, 0.26)	0.87 (0.86, 0.87)	2.2 (2.2, 2.1)
				7	0.83 (0.80, 0.85)	< 0.02 (< 0.02, < 0.02)	0.23 (0.23, 0.23)	0.89 (0.89, 0.88)	1.9 (1.9, 2.0)
Fisk, MO, USA, 2011 (Southern Giant)	3 (7, 7)	100, 100, 100	280, 280, 280	0	3.9 (4.4, 3.3)	<0.02 (<0.02, <0.02)	0.10 (0.10, 0.10)	0.40 (0.38, 0.41)	4.4 (4.9, 3.9)
				3	$\frac{1.9}{1.9}(1.9,$	< 0.02 (< 0.02, < 0.02)	0.36 (0.34, 0.38)	0.45 (0.44, 0.45)	<u>2.7</u> (2.7, 2.7)
York, NE, USA, 2011 (Green Wave)	3 (7, 7)	100, 100, 110	290, 290, 290	0	3.7 (3.5, 4.0)	<0.02 (<0.02, <0.02)	0.12 (0.12, 0.12)	0.09 (0.10, 0.07)	3.9 (3.7, 4.2)
				3	$\frac{0.57}{0.58}(0.55,$	< 0.02 (< 0.02, < 0.02)	0.19 (0.19, 0.18)	0.18 (0.19, 0.17)	<u>0.93</u> (0.93, 0.93)
Pilot Point, TX, USA, 2011 (Green Wave)	3 (7, 7)	110, 100, 110	320, 320, 320	0	6.8 (7.1, 6.5)	< 0.02 (< 0.02, < 0.02)	0.57 (0.54, 0.59)	1.3 (1.5, 1.1)	8.7 (9.1, 8.2)
				3		< 0.02 (< 0.02, < 0.02)	0.25 (0.27, 0.22)	0.97 (0.93, 1.0)	$\frac{1.7}{(1.7, 1.7)}$
Yuba City, CA, USA, 2011 (India)	3 (7, 8)	100, 100, 100	280, 280, 280	0	2.0 (2.2, 1.8)	< 0.02 (< 0.02, < 0.02)	0.08 (0.09, 0.07)	0.14 (0.14, 0.13)	2.2 (2.4, 2.0)
				3	$\frac{0.90}{0.95}$ (0.84, 0.95)	< 0.02 (< 0.02, < 0.02)	0.23 (0.21, 0.24)	0.22 (0.21, 0.23)	$\frac{1.3}{(1.3, 1.4)}$

Fluxapyroxad

Residues were mostly undetectable in the untreated control samples, apart from a single detection of M700F008 below the LOQ

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

Radish leaves

A series of trials in <u>radish</u> was conducted in the USA (Norris, 2012). Three applications of fluxapyroxad as a 62.5 g/L EC formulation were made a target rate of 100 g ai/ha and a target interval of 7 days. Radish roots and tops (duplicate samples) were sampled at 7 days after the last application.

Location, Year (variety)	Application				Residues, mg/kg parent equivalents						
	No.	Rate,	Spray	DALA	Fluxa	M700	M700	M700	Total ^a		
	(RTI, days)	g ai/ha	volume (L/ha)		pyroxad	F002	F008	F048			
Wayne, NY, USA, 2010 (Scarlet Globe)	3 (7, 7)	100, 98, 98	280, 270, 270	7	$\frac{0.7}{0.6}(0.7,$	< 0.02 (< 0.02, < 0.02)	0.3 (0.3, 0.3)	0.2 (0.2, 0.2)	$\frac{1.2}{1.1}(1.2,$		
Martin, FL, USA, 2011 (Escala)	3 (7, 7)	99, 100, 100	280, 280, 290	7	<u>0.2</u> (0.2, 0.2)	< 0.02 (< 0.02, < 0.02)	0.2 (0.2, 0.2)	0.2 (0.2, 0.2)	<u>0.6</u> (0.6, 0.6)		
Palm Beach, FL, USA, 2011 (Escala)	3 (7, 7)	100, 100, 100	290, 280, 290	7	$\frac{0.2}{0.1}(0.2,$	< 0.02 (< 0.02, < 0.02)	0.2 (0.2, 0.1)	0.07 (0.07, 0.07)	$\frac{0.4}{0.3}(0.5,$		
Clinton, IL, USA, 2010 (Champion)	3 (6, 7)	100, 100, 100	280, 280, 280	7	<u>4</u> (4, 4)	< 0.02 (< 0.02, < 0.02)	0.9 (0.8, 0.9)	0.5 (0.5, 0.6)	<u>5</u> (5, 6)		
Tulare, CA, USA, 2010 (Crimson Giant)	3 (7, 7)	100, 100, 100	280, 280, 280	7	<u>1</u> (1, 1)	< 0.02 (< 0.02, < 0.02)	0.5 (0.5, 0.5)	0.2 (0.2, 0.2)	<u>1.7</u> (1.7, 1.7)		

Table 29 Residues of fluxapyroxad and its metabolites in radish tops

No residues were detected in the untreated control samples

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

Spinach

A series of trials in <u>spinach</u> was conducted in the USA (Schreier, 2013-b). Three foliar broadcast applications of a 62.5 g/L EC or a 300 g/L SC formulation were made at a target rate of 200 g ai/ha and a target interval of 7 days using pressurised backpack sprayers. Duplicate treated samples were collected 0 and 1 day after the last application, with additional decline data samples being collected at one site.

Table 30 Residues of fluxapyroxad and its metabolites in spinach

Location, Year (variety)	Application				Residues, mg/kg parent equivalents				
	Formulatio	No.	Rate,	Spray	DAL	Fluxapyroxa	M700	M700	Total
	n	(RTI,	g ai/ha	volume	А	d	F008	F048	a
		days)		(L/ha)					
Guadalupe, CA,	62.5 EC	3 (7, 7)	200,	280, 280,	0	9.2 (9.6, 8.8)	0.11	< 0.01	9.3
USA, 2011			200,	290			(0.11,	(< 0.01,	(9.7,
(UniPak 151)			200				0.10)	< 0.01)	8.9)
					1	<u>6.0</u> (6.1, 6.0)	0.23	< 0.01	6.3
							(0.21,	(< 0.01,	(6.3,

Location, Year (variety)	Application					Residues, mg/kg parent equivalents			
	Formulatio n	No. (RTI, days)	Rate, g ai/ha	Spray volume (L/ha)	DAL A	Fluxapyroxa d	M700 F008	M700 F048	Total ^a
							0.25)	< 0.01)	6.3)
Guadalupe, CA, USA, 2011 (Avenger)	300 SC	3 (7, 7)	200, 200, 210	250, 250, 250	0	6.2 (6.0, 6.5)	0.07 (0.08, 0.06)	< 0.01 (< 0.01, < 0.01)	6.3 (6.0, 6.6)
					1	1.9 (1.8, 1.9)	0.07 (0.07, 0.07)	< 0.01 (< 0.01, < 0.01)	1.9 (1.9, 2.0)
Germansville, PA, USA, 2011 (Tyee)	62.5 EC	3 (7, 7)	210, 210, 210	310, 300, 310	0	9.8 (9.4, 10.2)	0.41 (0.39, 0.42)	< 0.01 (< 0.01, < 0.01)	10.2 (9.8, 10.6)
					1	<u>8.3</u> (8.4, 8.2)	0.44 (0.42, 0.46)	< 0.01 (< 0.01, < 0.01)	<u>8.8</u> (8.8, 8.7)
Lebanon, OK, USA, 2011 (Spargo F1, Tyee F1, Bloomsdale)	62.5 EC	3 (7, 7)	200, 210, 210	320, 320, 320	0	18.0 (19.5, 16.5)	0.81 (0.71, 0.91)	0.03 (0.03, 0.02)	18.8 (20.2 , 17.4)
					1	$\frac{11.5}{11.0}$ (11.9,	0.76 (0.74, 0.77)	0.02 (0.02, 0.02)	<u>12.2</u> (12.7 , 11.8)
Sycamore, GA, USA, 2011 (Crocodile RZ)	300 SC	3 (7, 7)	200, 200, 200	280, 290, 280	0	6.1 (6.0, 6.3)	0.04 (0.04, 0.04)	< 0.01 (< 0.01, < 0.01)	6.2 (6.0, 6.3)
					1	4.4 (4.1, 4.7)	0.05 (0.05, 0.04)	< 0.01 (< 0.01, < 0.01)	4.4 (4.1, 4.8)
					3	<u>5.2</u> (4.8, 5.6)	0.06 (0.05, 0.06)	< 0.01 (< 0.01, < 0.01)	<u>5.2</u> (4.8, 5.6)
					5	3.7 (3.4, 4.0)	0.06 (0.05, 0.06)	< 0.01 (< 0.01, < 0.01)	3.8 (3.5, 4.1)
					7	3.2 (3.3, 3.2)	0.03 (0.03, 0.03)	<0.01 (< 0.01, < 0.01)	3.3 (3.3, 3.2)
Monte Vista, CO, USA, 2012 (Regiment)	300 SC	3 (7, 7)	200, 200, 200	280, 280, 280	0	7.9 (7.5, 8.3)	0.05 (0.05, 0.04)	<0.01 (< 0.01, < 0.01)	8.0 (7.6, 8.4)
					1	<u>6.7</u> (6.6, 6.9)	0.03 (0.03, 0.02)	< 0.01 (< 0.01, < 0.01)	<u>6.8</u> (6.6, 6.9)

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

Root and tuber vegetables

Carrot

A series of trials in <u>carrots</u> was conducted in the USA (Norris, 2012 and Schreier, 2015). Three applications of fluxapyroxad as a 62.5 g/L EC formulation were made a target rate of 100 g ai/ha and a target interval of 7 days. Carrot roots (duplicate samples) were sampled at 7 days after the last application, with additional samples being collected from 0-14 days at one decline trial site.

Location, Year (variety)	App	olication			Residues, n	ng/kg paren	t equivalents		
	No. (R TI, day s)	Rate, g ai/ha	Spray volume (L/ha)	DA LA	Fluxapyro xad	M700 F002	M700 F008	M700 F048	Total ^a
Hillsborough, FL, USA, 2010 (Imperator 58)	3 (7, 7)	100, 100, 100	280, 280, 280	7	$\frac{0.1}{0.1}(0.1, 0.1)$	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.1}{0.1}(0.1,$
Jefferson, IA, USA, 2010 (Nantes Scarlet)	3 (7, 7)	100, 99, 100	280, 280, 290	7	$\frac{0.05}{0.05}(0.04, 0.05)$	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.05}{0.05}(0.04, 0.05)$
(Nantes Scarlet)	5 (7, 6)	100, 97, 100	290, 280, 270	/	<u>0.06</u> (0.00, 0.06)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.06</u> (0.00, 0.06)
Tulare, CA, USA, 2010 (Danvers 126)	3 (7, 7)	100, 100, 100	280, 280, 280	7	<u>0.5</u> (0.5, 0.5)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.5}{0.5}(0.5,$
Tulare, CA, USA, 2010 (Danvers 126)	3 (7, 7)	98, 100, 100	270, 280, 280	7	0.1 (0.1, 0.1)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.1 (0.1, 0.1)
Tulare, CA, USA, 2010 (Danvers 126)	3 (7, 7)	100, 100, 100	280, 290, 290	0	0.2 (0.2, 0.2)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.2 (0.2, 0.2)
				3	0.4 (0.3, 0.4)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.4 (0.3, 0.4)
				7	0.3 (0.3, 0.3)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.3 (0.3, 0.3)
				10	0.4 (0.3, 0.4)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.4 (0.3, 0.4)
				14	0.4 (0.4, 0.3)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.4 (0.4, 0.3)
Grant, WA, USA, 2010 (Danvers 126)	3 (7, 7)	100, 100, 100	280, 280, 280	7	$\frac{0.04}{0.04}$ (0.04,	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.04}{0.04}$ (0.04, 0.04)

Table 31 Residues of fluxapyroxad and its metabolites in carrot roots Norris, 2012)

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

Location, Year (variety)	Applic	cation			Residues, mg/kg parent equivalents					
	No. (RTI , days)	Rate, g ai/ha	Spray volume (L/ha)	DAL A	Fluxapyro xad	M700 F002	M700 F008	M700 F048	Total ^a	
Madill, OK, USA, 2014 (Danvers)	3 (7, 6)	98, 100, 100	260, 260, 250	0	0.061 (0.054, 0.068) c0.01	< 0.02 (< 0.02, < 0.02)	0.021 (0.022, 0.020) c0.016	< 0.01 (< 0.01, < 0.01)	0.082 (0.076, 0.088)	
				3	0.063 (0.065, 0.060)	< 0.02 (< 0.02, < 0.02)	0.022 (0.021, 0.023)	< 0.01 (< 0.01, < 0.01)	0.085 (0.086, 0.083)	
				10	0.072 (0.072, 0.071)	< 0.02 (< 0.02, < 0.02)	0.023 (0.023, 0.022)	< 0.01 (< 0.01, < 0.01)	0.094 (0.095, 0.093)	
				14	0.066 (0.063, 0.069)	< 0.02 (< 0.02, < 0.02)	0.022 (0.021, 0.022)	< 0.01 (< 0.01, < 0.01)	0.088 (0.084, 0.091)	

Table 32 Residues of fluxapyroxad and its metabolites in carrot roots (Schreier, 2015)

Except where noted, no residues were detected in the untreated control samples

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

Potato

A number of residue trials in <u>potatoes</u> were conducted in Europe (Kramm, 2013-a, and Schaufele, 2013). Applications of a 300 g/L SC formulation were made using handheld equipment, at planting. The application was made in two passes, the first in the open furrow prior to sowing the seed potatoes, and the second over the top of the seed potatoes prior to filling in the furrow. The target total rate was 0.25 kg ai/ha. Samples of tubers were collected shortly prior to and at normal harvest maturity (BBCH growth stage 47–49).

Table 33 Residues of fluxapyroxad and its metabolites in potato tubers after in-furrow treatment at planting

Location, Year (variety)	Applicatio	on		Residues, mg/kg parent equivalents						
	Rate, g ai/ha	Spray volume, L/h a	DAL A	Sample	Fluxapy roxad	M700 F002	M700 F008	M700 F048	Total ^a	
Waldsee, Germany, 2011 (Berber)	230	140	105	Immatu re tubers	0.02	< 0.02	< 0.01	< 0.01	0.02	
			133	Mature tubers	0.04	< 0.02	< 0.01	< 0.01	0.04	
Studernheim, Germany, 2011 (Belana)	260	200	92	Immatu re tubers	0.02	< 0.02	< 0.01	< 0.01	0.02	
			120	Mature tubers	0.01	< 0.02	< 0.01	< 0.01	0.01	
Leicestershire, UK, 2011 (Cara)	250	200	88	Immatu re tubers	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
			116	Mature tubers	0.01	< 0.02	< 0.01	< 0.01	0.01	
Derbyshire, UK, 2011 (Maris Piper)	260	210	76	Immatu re tubers	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
			104	Mature	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	

Location, Year (variety)	Application	on		Residues, mg/kg parent equivalents						
	Rate, g ai/ha	Spray volume, L/h a	DAL A	Sample	Fluxapy roxad	M700 F002	M700 F008	M700 F048	Total ^a	
0	2(0	100	01	tubers	.0.01	.0.02	.0.01	.0.01	.0.01	
Ottersum, the Netherlands, 2011 (Presto)	260	100	91	Immatu re tubers	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
			112	Mature tubers	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
Siebengeweld, the Netherlands, 2011 (Cilena)	270	110	98	Immatu re tubers	0.01	< 0.02	< 0.01	< 0.01	0.01	
			114	Mature tubers	0.02	< 0.02	< 0.01	< 0.01	0.02	
Marbais, Belgium, 2011 (Ramos)	260	160	110	Immatu re tubers	0.01	< 0.02	< 0.01	< 0.01	0.01	
			134	Mature tubers	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
Sirault, Belgium, 2011 (Bintje)	270	160	108	Immatu re tubers	0.03	< 0.02	< 0.01	< 0.01	0.03	
			133	Mature tubers	0.04	< 0.02	< 0.01	< 0.01	0.04	
Duras, France, 2012 (Mona Lisa)	280	160	57	Immatu re tubers	0.01	< 0.02	< 0.01	< 0.01	0.01	
			77	Mature tubers	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
Bonnieux, France, 2012 (Lisseta)	270	160	68	Immatu re tubers	0.02	0.02	< 0.01	< 0.01	0.02	
			95	Mature tubers	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
Nea Magnisia, Greece, 2012 (Jaerla)	250	150	70	Immatu re tubers	0.01	0.02	< 0.01	< 0.01	0.01	
			92	Mature tubers	< 0.01	0.02	< 0.01	< 0.01	< 0.01	
Platanos, Greece, 2012 (Agria)	260	150	77	Immatu re tubers	0.01	< 0.02	< 0.01	< 0.01	0.01	
			111	Mature	0.02	< 0.02	< 0.01	< 0.01	0.02	
Mulazzano, Italy, 2012 (Desiree)	290	180	121	Immatu re	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
			126	tubers Mature tubers	0.04	< 0.02	< 0.01	< 0.01	0.04	
Caleppio di Settala, Italy, 2012 (Kennebek)	260	150	106	Immatu re tubers	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
(112	Mature	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
Paterna, Spain, 2012 (Nicola)	260	160	80	Immatu re tubers	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
			90	Mature	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
Valencia, Spain, 2012 (Desiree)	250	150	81	Immatu re	0.02	< 0.02	< 0.01	< 0.01	0.02	
			94	Mature	0.03	< 0.02	< 0.01	< 0.01	0.03	
L							1			

Location, Year (variety)	Applicatio	on		Residues, mg/kg parent equivalents						
	Rate, g ai/ha	Spray volume, L/h a	Sample	Fluxapy roxad	M700 F002	M700 F008	M700 F048	Total ^a		
				tubers						

No residues were found above the LOQ in the untreated control samples

^a Sum of parent, M700F008 and M700F048, expressed as parent, as per the residue definition for dietary risk assessment

In another study (Kramm, 2013-b), seed potatoes were treated with a 300 g/L fluxapyroxad SC formulation at a target rate of 0.006 kg ai/100 kg prior to planting. At the planting rate of 2500 kg/ha, this corresponds to a nominal application rate of 150 g ai/ha. Samples of tubers were collected shortly prior to and at normal harvest maturity (BBCH growth stage 47–49).

Table 34 Residues of fluxapyroxad and its metabolites in potato tubers after treatment of seed potatoes prior to sowing

Location, Year (variety)	Applicatio	on		Residues, mg/kg parent equivalents						
	Rate, g ai/100 k g	Rate, g ai/ha	DAL A	Sample	Fluxapy roxad	M700 F002	M700 F008	M700 F048	Total ^a	
Sturdenheim, Germany, 2012 (Nicola)	5.6	140	84	Immatu re tubers	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
			125	Mature tubers	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
Waldsee, Germany, 2012 (Nicola)	5.6	160	89	Immatu re tubers	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
			129	Mature tubers	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
Meauzac, France, 2012 (Nicola)	5.6	99	87	Immatu re tubers	0.02	< 0.02	< 0.01	< 0.01	0.02	
			128	Mature tubers	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
Paterna, Spain, 2012 (Nicola)	5.6	140	82	Immatu re tubers	0.01	< 0.02	< 0.01	< 0.01	0.01	
			93	Mature tubers	0.04	< 0.02	< 0.01	< 0.01	0.04	

No residues were found above the LOQ in the untreated control samples

^a Sum of parent, M700F008 and M700F048, expressed as parent, as per the residue definition for dietary risk assessment

Residue trials in potatoes conducted in the USA and Canada (3×100 g ai/ha foliar applications) was considered by the 2012 Meeting and the data is reproduced below.

Table 35 Residues from the foliar application of fluxapyroxad to potatoes in the USA and Canada (Johnston and Saha 2010, 2009/7003643)

Study No.	tudy No. Application				Matrix	PHI	Residu	es (mg/kg)					
Trial No. Country Voor	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxap	yroxad	M700F002	M700F008	M700F048	Total ^a	
(Variety)							Mean	Individual				Individual	Mean
GAP, USA	3		97- 101			7							
2009/7003643	3	6	100	280	Tuber	7	< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01

Study No.	Ap	plication			Matrix	PHI	Residu	es (mg/kg)					
Trial No. Country Vacr	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxap	yroxad	M700F002	M700F008	M700F048	Total ^a	
(Variety)							Mean	Individual				Individual	Mean
RCN R080451		7	101	282				< 0.01	< LOD	< LOD	< LOD	< 0.01	
USA			101	283		14	0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	0.01
(Wayne, New York)			302				< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
2008						21	0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	0.01
(Superior)							< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2009/7003643 RCN R080452	3	6 7	100 101	280 281	Tuber	7	< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
USA			101	281				< 0.01	< LOD	< LOD	< LOD	< 0.01	
(Wayne, New Vork)			302			14	0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
2008							0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
(Norland)						21	0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
							0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
2009/7003643	3	6	104	316	Tuber	7	< 0.01	< LOD	< 0.01	< LOD	< LOD	< 0.01	< 0.01
RCN R080453		8	102	310 314			< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
(Lehigh,			309	514		14	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
Pennsylvania)							< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2008 (Dark Red						21	.0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	. 0.01
(Dark Red Norland)							< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2009/7003643	3	7	102	255	Tuber	7		< 0.01	< LOD	< LOD	< LOD	< 0.01	
CN R080454 Canada (Queens, Prince Edward Island) 2008 (Yukon Gold)		6	96 95 293	238			< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
2009/7003643	3	7	100	250	Tuber	7		< LOD	< LOD	< LOD	< LOD	< 0.01	
RCN R080455 Canada (Queens, Prince Edward Island) 2008 (Shepody)		6	97 98 295	242 245			< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
2009/7003643 RCN R080456	3	6 7	120 99	223 236	Tuber	7	0.02	(0.01, 0.02) 0.02	< 0.01	< LOD	<lod< td=""><td>0.02</td><td>0.02</td></lod<>	0.02	0.02
USA (Tift, Georgia)			100 319	232			0.02	(< 0.01, 0.01) 0.01	< 0.01	< LOD	< LOD	0.01	0.02
(Red Pontiac)						14	0.02	(0.01, 0.02) 0.02	< 0.01	< LOD	< LOD	0.02	0.02
							0.02	(0.01, 0.01) 0.01	< 0.01	< LOD	< LOD	0.01	0.02
						21	0.02	(0.01, 0.02) 0.02	< 0.01	< LOD	< LOD	0.02	0.02
								< 0.01	< 0.01	< LOD	< LOD	< 0.01	
2009/7003643	3	7	101	284	Tuber	7		< 0.01	< LOD	< LOD	< LOD	< 0.01	
RCN R080457 USA (Seminole, Elorida)		7	100 100 301	281 280			< 0.01	(< LOD, < 0.01) < 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
2008						14	< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
(Red Pontiac)							~ 0.01	(< LOD,	< LOD	< LOD	< LOD	< 0.01	~ 0.01

Study No.	Ap	plication			Matrix	PHI	Residu	es (mg/kg))				
Trial No. Country Voor	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxap	yroxad	M700F002	M700F008	M700F048	Total ^a	
(Variety)							Mean	Individual				Individual	Mean
								< 0.01) < 0.01					
						21	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
							< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2009/7003643	3	6	101	189	Tuber	7	< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
RCN R080458		7	102	192			< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
(Freeborn,			304	190		14	< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
Minnesota)							< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
2008 (Cascade)						21	< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
(Cuscude)							< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
2009/7003643	3	6	105	196	Tuber	7	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
RCN R080459 USA		8	104 105	194 196			< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
(Cass, North			314	170		14	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
Dakota)							< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01	< 0.01
2009 (Red Lady)						21	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
(,))								< LOD	< LOD	< LOD	< LOD	< 0.01	. 0101
						28	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
								< LOD	< LOD	< LOD	< LOD	< 0.01	. 0101
2009/7003643	3	7	101	154	Tuber	7	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
USA		/	99 102	100				< LOD	< LOD	< LOD	< LOD	< 0.01	
(Keokuk,			302	-		14	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
Iowa) 2008								< LOD	< LOD	< LOD	< LOD	< 0.01	
(Kennebec)						21	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
								< LOD	< 0.01	< LOD	< 0.01	< 0.01	
2009/7003643	3	7	129	242	Tuber	7	< 0.01	< LOD	< LOD	< LOD	<lod< td=""><td>< 0.01</td><td>< 0.01</td></lod<>	< 0.01	< 0.01
USA		/	100 94	202				< LOD	< LOD	< LOD	<lod< td=""><td>< 0.01</td><td></td></lod<>	< 0.01	
(Dane,			323			14	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
Wisconsin)								< LOD	< LOD	< LOD	< LOD	< 0.01	
(Superior)						21	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01	< 0.01
								< LOD	< LOD	< LOD	< 0.01	< 0.01	
2009/7003643	3	7	99 100	278	Tuber	7	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
USA		29	99	281				< LOD	< LOD	< LOD	< LOD	< 0.01	
(Pepin,			298			14	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
Wisconsin)								< LOD	< LOD	< LOD	<lod< td=""><td>< 0.01</td><td></td></lod<>	< 0.01	
(Russet						21	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
Burbank)								< LOD	< LOD	< LOD	< LOD	< 0.01	
2009/7003643	3	7	102	154	Tuber	7	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
Canada		/	99 102	149 153			< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
(Taber,			303	100		14	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
Alberta)							< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2008 (Russet						21	< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
Burbank)							~ 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2009/7003643	3	7	99	185	Tuber	7	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
RCN R080464		7	102	191			< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
USA			101	109		14	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01

Study No.	Ap	plication			Matrix	PHI	Residu	es (mg/kg)					
Trial No. Country Voor	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxap	yroxad	M700F002	M700F008	M700F048	Total ^a	
(Variety)							Mean	Individual				Individual	Mean
(Cache, Utah)			302					< LOD	< LOD	< LOD	< LOD	< 0.01	
2008						21		< LOD	< LOD	< LOD	< LOD	< 0.01	
(Klondike Rose)							< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2009/7003643	3	7	99	187	Tuber	7		< LOD	< LOD	< LOD	< LOD	< 0.01	
RCN R080465	-	7	99	187			< 0.01	< LOD	< LOD	< LOD	<lod< td=""><td>< 0.01</td><td>< 0.01</td></lod<>	< 0.01	< 0.01
USA (Sacramento			99 207	187		14		< LOD	< LOD	< LOD	< LOD	< 0.01	
California)			271				< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2008						21	0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	0.01
(1533)							< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2009/7003643	3	6	100	234	Tuber	7	.0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	0.01
RCN R080466		8	102	239			< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
USA (Pavette,			99 301	233		14	.0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	.0.01
Idaho)							< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2008 (Norkotah)						21	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
(INOIKOtali)							< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2009/7003643	3	7	102	240	Tuber	7	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
RCN R080467		7	102	238			< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
(Washington,			305	230		14	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
Idaho)							< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2008 (Ranger						21	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
Russet)							< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2009/7003643	3	6	103	192	Tuber	7	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
RCN R080468		7	103	192			< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
(Bingham,			309	192		10	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
Idaho)							< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2008 (Ranger						15	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
Russet)							< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
						21	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
							< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
						28	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
							< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
2009/7003643	3	8	98 07	184	Tuber	7	< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
USA		6	97 99	182 186			< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
(Power, Idaho)			294			14	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
2008 (Busset								< LOD	< LOD	< LOD	< LOD	< 0.01	. 0.01
(Russet Burbank)						21	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
,								< 0.01	< LOD	< LOD	< LOD	< 0.01	. 0.01
2009/7003643	3	7	98 102	277	Tuber	7	< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
USA		/	102	288 283				< 0.01	< LOD	< LOD	< LOD	< 0.01	
(Benton,			300			14	< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
Oregon)								< 0.01	< LOD	< LOD	< LOD	< 0.01	
(Ranger						21	< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
Russet)							. 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	. 0.01
2009/7003643	3	7	104	192	Tuber	7	< 0.01	< LOD	< LOD	< LOD	< LOD	< 0.01	< 0.01
KCN R080471		1	103	192			< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01

Study No.	Ap	plication			Matrix	PHI	Residu	ies (mg/kg)					
Trial No. Country Voor	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxap	yroxad	M700F002	M700F008	M700F048	Total ^a	
(Variety)							Mean	Individual				Individual	Mean
Canada			101	189		14	< 0.01	< 0.01	< LOD	< LOD	<lod< td=""><td>< 0.01</td><td>< 0.01</td></lod<>	< 0.01	< 0.01
(Strathcona,			308				< 0.01	< 0.01	< LOD	< LOD	<lod< td=""><td>< 0.01</td><td>< 0.01</td></lod<>	< 0.01	< 0.01
2008						21		< 0.01	< LOD	< LOD	<lod< td=""><td>< 0.01</td><td></td></lod<>	< 0.01	
(Russet Burbank E3)							< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01

^a All analytes are reported in terms of themselves. Total residues ((Fluxapyroxad + M700F008 + M700F048) are expressed as parent equivalents.

LOQ is 0.01 mg/kg for each of parent fluxapyroxad and metabolites M700F008, M700F002 and M700F048

LOD is 0.002 mg/kg for each of parent fluxapyroxad and metabolites M700F008, M700F002 and M700F048

Radish

A series of trials in <u>radish</u> was conducted in the USA (Norris, 2012). Three applications of fluxapyroxad as a 62.5 g/L EC formulation were made a target rate of 100 g ai/ha and a target interval of 7 days. Duplicate samples of radish roots and tops were collected at 7 days after the last application.

Location, Year (variety)	Applicati	ion			Residues, mg/kg, parent equivalents						
	No. (RTI, days)	Rate, g ai/ha	Spray volume (L/ha)	DALA	Fluxapyro xad	M700 F002	M700 F008	M700 F048	Total*		
Wayne, NY, USA, 2010 (Scarlet Globe)	3 (7, 7)	100, 98, 98	280, 270, 270	7	0.05 (0.04, 0.05)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.05}{0.05}(0.04,$		
Martin, FL, USA, 2011 (Escala)	3 (7, 7)	99, 100, 100	280, 280, 290	7	$\frac{0.04}{0.04}(0.04,$	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.04}{0.04}$ (0.04,		
Palm Beach, FL, USA, 2011 (Escala)	3 (7, 7)	100, 100, 100	290, 280, 290	7	$ \begin{array}{c} \underline{0.03} \\ 0.03) 0.03) \end{array} $	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.03}{0.05}(0.05, 0.05)$		
Clinton, IL, USA, 2010 (Champion)	3 (6, 7)	100, 100, 100	280, 280, 280	7		< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.1}{0.1}(0.09, 0.1)$		
Tulare, CA, USA, 2010 (Crimson Giant)	3 (7, 7)	100, 100, 100	280, 280, 280	7	$\frac{0.1}{0.1}(0.1,$	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.1}{0.1}(0.1, 0.1)$		

Table 36 Residues of fluxapyroxad and its metabolites in radish roots

No residues were detected in the untreated control samples

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

Sugar beet

Residue trials in sugar beet were considered by the 2012 Meeting and the data is reproduced below.

Table 37 Residue	es in sugar	beet roots	from	the foliar	application	of f	fluxapyroxad to	sugar	beet in the
USA and Canada	(Johnston	and Saha	2010, 1	2009/700	3643)			_	

Study No.	Ap	plication			Matrix	PHI	Residu	ies (mg/kg)					
Trial No. Country Voor	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxap	oyroxad	M700F002	M700F008	M700F048	Total ^a	
(Variety)							Mean	Individual				Individual	Mean
GAP, USA	3		97- 101			7							
2009/7003643	3	7	101	189	Roots	7	0.00	0.06	< LOD	< LOD	< LOD	0.06	0.00
RCN R080472		7	100	188			0.06	0.06	< LOD	< LOD	< LOD	0.06	0.06
(Freeborn, Minnesota)			301	188	Roots	13		(0.04, 0.05) 0.05	< LOD	< LOD	< LOD	0.05	
2008 (Beta 130R)							0.04	(0.03, 0.03) 0.03	(< LOD, < 0.01) < 0.01	< LOD	< LOD	0.03	0.04
					Roots	21	0.03	(0.02, 0.04) 0.03	(< LOD, < 0.01) < 0.01	< LOD	< LOD	0.03	0.03
								(0.03, 0.03) 0.03	< LOD	< LOD	< LOD	0.03	
2009/7003643	3	6	99	186	Roots	7	0.02	0.02	<lod< td=""><td>< LOD</td><td>< LOD</td><td>0.02</td><td>0.02</td></lod<>	< LOD	< LOD	0.02	0.02
RCN R080473		8	98 100	183			0.03	0.03	< LOD	< LOD	< LOD	0.03	0.03
(Cass, North			297	107	Roots	14	0.02	0.02	< LOD	< LOD	<lod< td=""><td>0.02</td><td>0.02</td></lod<>	0.02	0.02
Dakota)							0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
2008 (539 RR)					Roots	21	0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
(55) (()							0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
2009/7003643	3	7	104	174	Roots	7	0.04	0.05	< LOD	< LOD	< LOD	0.05	0.04
USA		/	98 101	157 177			0.0.	0.03	< LOD	< LOD	< LOD	0.03	0.0.
(Jetterson, Iowa)			303		Roots	14		(0.05, 0.04) 0.05	< LOD	< LOD	< LOD	0.05	
2008 (Crystal 539RR)							0.06	(0.06, 0.06) 0.06	(< LOD, < 0.01) < 0.01	< LOD	< LOD	0.06	0.06
					Roots	21	0.05	(0.03, 0.04) 0.04	(< LOD, < 0.01) < 0.01	< LOD	< LOD	0.04	0.05
							0.05	(0.07, 0.05) 0.06	(< LOD, < 0.01) < 0.01	< LOD	< LOD	0.06	0.05
2009/7003643	3	7	102	190	Roots	7		0.01	< LOD	< LOD	< LOD	0.01	
RCN R080475 Canada		7	103 102	192 189			0.01	(0.01, 0.01) 0.01	< LOD	< LOD	< LOD	0.01	0.01
(Strathcona, Alberta) 2008			307		Roots	14	0.04	(0.03, 0.03) 0.03	< LOD	< LOD	< LOD	0.03	0.04
(Betaseed Beta 1385)							0.04	(0.04, 0.04) 0.04	< LOD	< LOD	<lod< td=""><td>0.04</td><td>0.04</td></lod<>	0.04	0.04
					Roots	21	0.04	(0.02, 0.03) 0.03	< LOD	< LOD	< LOD	0.03	0.04
							0.04	(0.03, 0.04) 0.04	< LOD	< LOD	<lod< td=""><td>0.04</td><td>0.04</td></lod<>	0.04	0.04
2009/7003643	3	7	102	190	Roots	7	0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
RCN R080476		7	101	190 180			0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
(LaMoure,			304	107	Roots	13	0.04	0.06	< LOD	< LOD	< LOD	0.06	0.04
North Dakota)							0.04	0.02	< LOD	< LOD	< LOD	0.02	0.04

Study No.	Ap	plication			Matrix	PHI	Residu	ies (mg/kg)					
Trial No. Country Vear	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxap	yroxad	M700F002	M700F008	M700F048	Total ^a	
(Variety)							Mean	Individual				Individual	Mean
2008					Roots	21	0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	0.01
(539 RR)							0.01	0.01	< LOD	< LOD	< LOD	0.01	0.01
2009/7003643	3	7	99	150	Roots	8	< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
RCN R080477		10	100	151			< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
(Taber,			298	150	Roots	15	< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
Alberta)							< 0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	< 0.01
2008 (Beta B85-Pro					Roots	22	0.01	0.01	< LOD	< LOD	< LOD	0.01	0.01
(Bear Bos 110 15)							0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	0.01
2009/7003643 RCN R080478	3	8 6	102 100	284 280	Roots	7	0.02	(0.02, 0.02) 0.02	< LOD	< LOD	< LOD	0.02	0.02
USA (Hockley, Texas)			99 301	277			0.02	(0.01, 0.02) 0.02	< LOD	< LOD	< LOD	0.02	0.02
2008 (Phoenix)					Roots	14	0.03	(0.03, 0.03) 0.03	< LOD	< LOD	< LOD	0.03	0.03
							0100	(0.02, 0.03) 0.03	< LOD	< LOD	< LOD	0.03	0102
					Roots	21	0.03	(0.03, 0.02) 0.03	< LOD	< LOD	< LOD	0.03	0.03
							0100	(0.02, 0.02) 0.02	< LOD	< LOD	< LOD	0.02	0102
2009/7003643	3	7	103	192	Roots	8	0.01	0.01	< LOD	< LOD	< LOD	0.01	0.01
USA		/	103	193 188			0.01	< 0.01	< LOD	< LOD	< LOD	< 0.01	0.01
(Cache, Utah)			307		Roots	15		< 0.01	< LOD	< LOD	< LOD	< 0.01	-
2008 (4023 R)							0.01	(< 0.01, 0.01) 0.01	< LOD	< LOD	< LOD	0.01	0.01
					Roots	21	0.01	(< 0.01, 0.01) 0.01	< LOD	< LOD	< LOD	0.01	0.01
							0.01	(< 0.01, 0.01) 0.01	< LOD	< LOD	< LOD	0.01	0.01
2009/7003643	3	7	91	286	Roots	7	0.04	0.03	< LOD	< LOD	< LOD	0.03	0.04
RCN R080480		7	100 99	287 286			0.04	0.04	< LOD	< LOD	< LOD	0.04	0.04
(Tulare,			290	200	Roots	14	0.03	0.03	< LOD	< LOD	< LOD	0.03	0.03
California)							0.02	0.03	< LOD	< LOD	< LOD	0.03	0.02
(Phoenix)					Roots	21	0.03	0.02	< LOD	< LOD	< LOD	0.02	0.03
								0.03	< LOD	< LOD	< LOD	0.03	
2009/7003643 RCN R080481	3	7 7	98 101	185 190	Roots	7	0.05	0.07	< LOD	< LOD	<lod< td=""><td>0.07</td><td>0.05</td></lod<>	0.07	0.05
USA		/	98	183		10		0.03	< LOD	< LOD	< LOD	0.03	
(Power, Idaho) 2008			297		Roots	10	0.04	0.03	< LOD < LOD	< LOD < LOD	<lod <lod< td=""><td>0.03</td><td>0.04</td></lod<></lod 	0.03	0.04
(Hilleshog					Roots	15	0.02	0.05	< LOD	< LOD	< LOD	0.05	0.02
9026)							0.03	0.01	< LOD	< LOD	< LOD	0.01	0.03
					Roots	21	0.04	0.04	< LOD	< LOD	< LOD	0.04	0.04
							0.04	0.04	< LOD	< LOD	< LOD	0.04	0.04
					Roots	28	0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
							5.52	0.02	< LOD	< LOD	< LOD	0.02	0.02

Study No. Application Trial No. No Interval Wate				Matrix	PHI	Residu	es (mg/kg)						
Trial No. Country Vear	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxap	yroxad	M700F002	M700F008	M700F048	Total ^a	
(Variety)							Mean	Individual				Individual	Mean
2009/7003643	3	7	98	183	Roots	8	0.02	0.01	< LOD	< LOD	< LOD	0.01	0.02
RCN R080482		7	103	191 192			0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
(Bingham,			300	165	Roots	15	0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
Idaho)							0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
2008 (BTS					Roots	21	0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
(B13 25RR05)							0.03	0.03	< LOD	< LOD	< LOD	0.03	0.03
2009/7003643	3	9	120	223	Roots	8	0.05	0.05	< LOD	< LOD	< LOD	0.05	0.05
RCN R080483		7	101	189			0.05	0.04	< LOD	< LOD	< LOD	0.04	0.05
(RM of			105 326	190	Roots	15	0.02	0.02	< LOD	< LOD	< LOD	0.02	0.02
Portage la							0.05	0.04	< LOD	< LOD	< LOD	0.04	0.05
Prairie,					Roots	20		0.02	< LOD	< LOD	< LOD	0.02	
2008 (Betaseed Beta							0.03	0.03	< LOD	< LOD	< LOD	0.03	0.03
1385)													

^a All analytes are reported in terms of themselves. Total residues ((Fluxapyroxad + M700F008 + M700F048) are expressed as parent equivalents.

LOQ is 0.01 mg/kg for each of parent fluxapyroxad and metabolites M700F008, M700F002 and M700F048

LOD is 0.002 mg/kg for each of parent fluxapyroxad and metabolites M700F008, M700F002 and M700F048

Celery

A series of trials in <u>celery</u> was conducted in the USA (Schreier, 2013-b). Three applications of a 62.5 g/L EC formulation of fluxapyroxad were made at a target rate of 200 g ai/ha, and an interval of 7 days. Duplicate treated samples were collected at 0 and 1 days after the last application, with additional decline samples being collected at a single site.

Table 38 Residues of fluxapyroxad	and its metabolites	in celery (untrimmed	leaf stalks)
-----------------------------------	---------------------	----------------------	--------------

Location, Year	Applica	tion				Residues, r	ng/kg parent	equivalents	
(variety)									
	Form	No.	Rate,	Spray	DA	Fluxapyr	M700	M700	Total ^a
	ulatio	(RTI,	g ai/ha	volume	LA	oxad	F008	F048	
	n	days)		(L/ha)					
Gregory, MI, USA,	62.5	3 (7,	200,	280, 280,	0	1.2 (1.0,	< 0.01	< 0.01	1.2 (1.0,
2011 (Tongo)	EC	7)	200,	280		1.4)	(< 0.01,	(< 0.01,	1.4)
			200				< 0.01)	< 0.01)	
					1	<u>1.4</u> (1.4,	< 0.01	< 0.01	<u>1.4</u> (1.4,
						1.5)	(< 0.01,	(< 0.01,	1.5)
							< 0.01)	< 0.01)	
Belle Glade, FL, USA,	62.5	3 (6,	200,	290, 280,	0	2.2 (1.8,	< 0.01	< 0.01	2.2 (1.8,
2011 (Walt's Pride)	EC	7)	200,	280		2.6)	(< 0.01,	(< 0.01,	2.6)
			200				< 0.01)	< 0.01)	
					1	<u>1.</u> 3 (1.0,	< 0.01	< 0.01	<u>1.3</u> (1.0,
						1.6)	(< 0.01,	(< 0.01,	1.6)
							< 0.01)	< 0.01)	
Lompoc, CA, USA,	62.5	3 (7,	200,	280, 290,	0	2.5 (1.8,	< 0.01	< 0.01	2.5 (1.8,
2011 (Conquistador)	EC	7)	200,	280		3.2)	(< 0.01,	(< 0.01,	3.2)
			210				< 0.01)	< 0.01)	
					1	2.7 (2.7,	< 0.01	< 0.01	2.7 (2.7,
						2.6)	(< 0.01,	(< 0.01,	2.6)
							< 0.01)	< 0.01)	
Lompoc, CA, USA,	62.5	3 (7,	210,	280, 280,	0	5.2 (4.4,	< 0.01	< 0.01	5.2 (4.4,
2011 (Mission)	EC	7)	200,	280		6.1)	(< 0.01,	(< 0.01,	6.1)

Location, Year (variety)	Applica	tion				Residues, r	ng/kg parent	equivalents	
	Form ulatio n	No. (RTI, days)	Rate, g ai/ha	Spray volume (L/ha)	DA LA	Fluxapyr oxad	M700 F008	M700 F048	Total ^a
			200				< 0.01)	< 0.01)	
					1	$\frac{5.2}{5.5}$ (4.8,	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>5.2</u> (4.8, 5.5)
Guadalupe, CA, USA, 2011 (Conquistador)	62.5 EC	3 (7, 7)	200, 200, 200	280, 280, 280	0	1.5 (1.7, 1.2)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	1.5 (1.7, 1.2)
					1	1.5 (1.1, 1.9)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	1.5 (1.1, 1.9)
Guadalupe, CA, USA, 2011 (Mission)	62.5 EC	3 (7, 7)	200, 200, 210	280, 280, 280	0	2.0 (1.9, 2.1)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	2.0 (1.9, 2.1)
					1	$\frac{1.8}{2.0}(1.7,$	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{1.8}{2.0}(1.7,$
					3	1.4 (1.4, 1.4)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	1.4 (1.4, 1.4)
					5	1.1 (1.1, 1.1)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	1.1 (1.1, 1.1)
					7	1.0 (1.1, 0.97)	<0.01 (<0.01, <0.01)	<0.01 (<0.01, <0.01)	1.0 (1.1, 0.97)

Residues were generally undetectable in the untreated control samples, apart from a single detection of parent compound at a level < LOQ

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad

Cereals

Rice

A series of trials in <u>rice</u> was conducted in the USA (Thiel, 2012). Two foliar broadcast applications of a 300 g/L SC formulation of fluxapyroxad were made using backpack boom sprayers at a target rate of 150 g ai/ha, and a target interval of 7 days. An adjuvant (non-ionic surfactant, fatty acid methyl ester, or crop oil concentrate) was included in the tank mix for all applications. Duplicate treated samples of rice grain with husk were collected 28 days after the last application, with additional decline samples being collected from some sites.

Residue data for rice straw is tabulated in Table 39 below.

Table 39 Residues of fluxapyroxad and metabolites in rice (with husk)

Location, Year (variety)	App	lication	n		Residues, mg/kg, parent equivalents					
	No.	Rate,	Spray volume	DA	Fluxapyrox	M700 F002	M700 F008	M700 F048	Total ^a	
	(R	g	(L/ha)	LA	ad					
	TI,	ai/ha								
	day									
	s)									
Screeton, AR, USA, 2011	2	150,	190, 190	28	<u>0.61</u> (0.62,	< 0.02	< 0.01	< 0.01	<u>0.61</u> (0.62,	
(Jupiter)	(7)	150			0.59)	(< 0.02,	(< 0.01,	(< 0.01,	0.59)	
-						< 0.02)	< 0.01)	< 0.01)		

Location, Year (variety)	Арр	lication	n		Residues, mg/kg, parent equivalents					
	No. (R TI, day s)	Rate, g ai/ha	Spray volume (L/ha)	DA LA	Fluxapyrox ad	M700 F002	M700 F008	M700 F048	Total ^a	
Lonoke, AR, USA, 2011 (CL142AR)	2 (7)	160, 150	190, 190	28	$\frac{0.34}{0.34}$ (0.34, 0.34)	< 0.02 (< 0.02, < 0.02)	< 0.01 (0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.35</u> (0.35, 0.34)	
Washington, LA, USA, 2011 (Cocodrie)	2 (7)	160, 150	200, 200	28	$\frac{1.7}{1.7}(1.6,$	< 0.02 (< 0.02, < 0.02)	0.02 (0.02, 0.02)	< 0.01 (< 0.01, < 0.01)	<u>1.7</u> (1.7, 1.7)	
Cheneyville, LA, USA, 2011 (Cheniere)	2 (7)	150, 140	130, 140	28	$\frac{1.1}{0.84}$ (1.3,	< 0.02 (< 0.02, < 0.02)	0.03 (0.02, 0.03)	< 0.01 (< 0.01, < 0.01)	<u>1.1</u> (1.4, 0.87)	
Delaplaine, AR, USA, 2011 (CLXL 745)	2 (8)	150, 150	190, 190	28	<u>0.80</u> (0.80, 0.79)	< 0.02 (< 0.02, < 0.02)	0.03 (0.03, 0.03)	< 0.01 (< 0.01, < 0.01)	<u>0.83</u> (0.83, 0.82)	
Delaplaine, AR, USA, 2011 (CLXL 745)	2 (6)	150, 160	47, 47	28	0.47 (0.48, 0.46)	< 0.02 (< 0.02, < 0.02)	0.02 (0.02, 0.02)	< 0.01 (< 0.01, < 0.01)	0.49 (0.50, 0.48)	
Pollard, AR, USA, 2011 (CL 111)	2 (6)	150, 150	190, 190	0	5.3 (5.4, 5.2)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	5.3 (5.4, 5.2)	
				14	0.61 (0.56, 0.65)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.61 (0.56, 0.65)	
				28	<u>0.59</u> (0.46, 0.71)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.59</u> (0.46, 0.71)	
				30	0.56 (0.55, 0.56)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.56 (0.55, 0.56)	
				36	0.54 (0.61, 0.46)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.54 (0.61, 0.46)	
Campbell, MO, USA, 2011 (Wells)	2 (8)	150, 150	190, 190	28	<u>0.37</u> (0.34, 0.40)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.37</u> (0.34, 0.40)	
Fisk, MO, USA, 2011 (CL 151)	2 (8)	150, 150	190, 190	0	4.1 (4.3, 4.0)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	4.1 (4.3, 4.0)	
				14	0.98 (1.0, 0.92)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.98 (1.0, 0.92)	
				28	0.86 (0.88, 0.83)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.86 (0.88, 0.83)	
				30	<u>0.94</u> (1.0, 0.88)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.94</u> (1.0, 0.88)	
				35	0.78 (0.81, 0.74)	< 0.02 (< 0.02, < 0.02)	0.01 (< 0.01, 0.01)	< 0.01 (< 0.01, < 0.01)	0.78 (0.81, 0.75)	
Qulin, MO, USA, 2011 (CLXL 745)	2 (7)	160, 150	47, 47	29	$\frac{0.60}{0.58}$ (0.62,	< 0.02 (< 0.02, < 0.02)	0.02 (0.01, 0.02)	< 0.01 (< 0.01, < 0.01)	<u>0.62</u> (0.63, 0.60)	
Glennonville, MO, USA, 2011 (CL 151)	2 (6)	150, 150	47, 47	28	<u>0.26</u> (0.29, 0.22)	< 0.02 (< 0.02, < 0.02)	0.01 (0.01, 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.27</u> (0.30, 0.23)	
Dudley, MO, USA, 2011 (CL 111)	2 (7)	150, 150	190, 190	28	<u>0.92</u> (0.91, 0.93)	< 0.02 (< 0.02, < 0.02)	0.03 (0.03, 0.03)	< 0.01 (< 0.01, < 0.01)	<u>0.95</u> (0.94, 0.96)	

Location, Year (variety)	App	lication	n		Residues, mg/kg, parent equivalents						
	No. (R TI, day s)	Rate, g ai/ha	Spray volume (L/ha)	DA LA	Fluxapyrox ad	M700 F002	M700 F008	M700 F048	Total ^a		
Markham, TX, USA, 2011 (Cocodrie)	2 (7)	160, 150	190, 180	28	<u>0.92</u> (0.93, 0.91)	< 0.02 (< 0.02, < 0.02)	0.04 (0.04, 0.04)	< 0.01 (< 0.01, < 0.01)	<u>0.96</u> (0.97, 0.95)		
El Campo, TX, USA, 2011 (Cocodrie)	2 (7)	150, 150	190, 180	28	$\frac{1.2}{1.0}(1.3,$	< 0.02 (< 0.02, < 0.02)	0.03 (0.03, 0.03)	< 0.01 (< 0.01, < 0.01)	$\frac{1.2}{1.1}(1.3,$		
Porterville, CA, USA, 2011 (Koshihikari)	2 (6)	150, 150	190, 190	29	$\frac{1.2}{1.2}(1.2, 1.2)$	< 0.02 (< 0.02, < 0.02)	0.03 (0.02, 0.03)	< 0.01 (< 0.01, < 0.01)	<u>1.2</u> (1.2, 1.3)		
Yuba City, CA, USA, 2011 (M206)	2 (7)	150, 150	230, 230	29	<u>3.7</u> (3.8, 3.6)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>3.7</u> (3.8, 3.6)		

No residues of metabolites were detected in the untreated control samples, while residues of fluxapyroxad at levels < LOQ were found at two of the trial sites

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

Sorghum

Residue data in sorghum grain evaluated by the 2012 Meeting is tabulated below. Residue data for sorghum forage and stover is included in Table 46.

Table 40 Residues from the foliar application of fluxapyroxad to grain sorghum in the USA (White 2010, 2010/7003693)

Study No.		Matrix	x PHI days	Resid	ues (mg/kg)								
Trial No. Country Year	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxa	pyroxad	M700F002	M700F008	M700F048	Total ^a	
(Variety)							Mean	Individual				Individual	Mean
2010/7003693 RCN R080440	2	7	101 100	188 189	Grain	21		0.13	< LOD	< 0.01	< LOD	0.13	
USA (Butler, Missouri) 2008 (LGX-47)			201				0.13	0.12	< LOD	0.01	< LOD	0.13	0.13
2010/7003693	2	7	100	274	Grain	20		0.15	< LOD	< 0.01	< LOD	0.15	
RCN R080441 USA (Ottawa, Michigan) 2008 (9135)			99 199	270			0.15	0.14	< LOD	< 0.01	< LOD	0.14	0.15
2010/7003693	2	7	100	187	Grain	21		0.13	< LOD	0.04	< 0.01	0.17	
RCN R080442 USA (Cass, North Dakota) 2008 (WGF)			100 200	187			0.15	0.17	< LOD	0.05	< 0.01	0.22	0.20
2010/7003693	2	6	99	178	Grain	23		0.18	< LOD	< 0.01	< LOD	0.18	
RCN R080443 USA (Caddo,			102 201	234			0.19	0.19	< LOD	< 0.01	< LOD	0.19	0.19

Study No.	Ap	plication			Matrix PHI Residues (mg/kg)								
Trial No. Country Vear	No	Interval Days	g ai/ha	Water (L/ha)		days	Fluxa	pyroxad	M700F002	M700F008	M700F048	Total ^a	
(Variety)							Mean	Individual				Individual	Mean
Oklahoma) 2008 (753)													
2010/7003693	2	7	100	134	Grain	20		0.19	< LOD	< 0.01	< LOD	0.19	
RCN R080444 USA (Wharton, Texas) 2008 (84G50)			201	133			0.31	0.43	< LOD	0.01	< 0.01	0.44	0.32
2010/7003693 RCN R080445 USA	2	7	99 101 200	273 254	Grain	21		(< LOD, 0.58, 0.64) 0.41	< LOD	<loq< td=""><td>< LOD</td><td>0.41</td><td></td></loq<>	< LOD	0.41	
(Clarke, Georgia) 2008 (82G10)							0.40	(0.22, 0.44, 0.47) 0.38	< LOD	< 0.01	< LOD	0.38	0.40
2010/7003693	2	7	99	186	Grain	22		0.21	< LOD	0.01	< 0.01	0.22	
RCN R080446 USA (York, Nebraska) 2008 (7R34)			100 199	187			0.21	0.20	< LOD	0.01	< 0.01	0.21	0.22
2010/7003693	2	7	99	186	Grain	21		0.16	< LOD	< 0.01	< LOD	0.16	
RCN R080447 USA (Pawnee, Kansas) 2008 (84G62)			100 199	187			0.17	0.17	< LOD	< 0.01	< LOD	0.17	0.17
2010/7003693	2	7	104	194	Grain	21		0.30	< LOD	0.08	< 0.01	0.38	
RCN R080448 USA (Stafford, Kansas) 2008 (84G62)			97 201	182			0.24	0.17	< LOD	0.04	< 0.01	0.21	0.30

^a All analytes are reported in terms of themselves. Total residues ((Fluxapyroxad + M700F008 + M700F048) are expressed as parent equivalents.

LOQ is 0.01 mg/kg for each of parent fluxapyroxad and metabolites M700F008, M700F002 and M700F048

LOD is 0.002 mg/kg for each of parent fluxapyroxad and metabolites M700F008, M700F002 and M700F048

Sugar cane

A series of trials in <u>sugar cane</u> (Schreier, 2012-b) was conducted in the USA. Two foliar broadcast applications of a 62.5 g/L EC formulation of fluxapyroxad were made at a target rate and interval of 0.125 kg ai/ha and 14 days using pressurised backpack sprayers. At one of the trial sites, a second treated plot was established, with 2×0.625 kg ai/ha applications being made in order to generate raw sugar cane for processing (see below for further details of the processing phase of this study). Duplicate treated samples of sugar cane were collected by hand at a target interval of 14 days after the last application.

Location, Year (variety)	Applica	tion			Residues, mg/kg, parent equivalents					
	No. (RTI, days)	Rate, g ai/ha	Spray volume (L/ha)	DA LA	Fluxapyro xad	M700 F002	M700 F008	M700 F048	Total ^a	
Washington, LA, USA, (384)	2 (14)	120, 120	190, 190	14	0.05 (0.05, 0.05)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.05 (0.05, 0.05)	
Washington, LA, USA, (384)	2 (14)	120, 120	180, 190	14	0.06 (0.03, 0.09)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.06 (0.03, 0.09)	
Washington, LA, USA, (384)	2 (14)	120, 120	190, 190	14	0.04 (0.05, 0.03)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.04 (0.05, 0.03)	
Raymondville, TX, USA, 2010 (CP873388)	2 (15)	120, 120	190, 190	14	0.26 (0.19, 0.33)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.26 (0.19, 0.33)	
Homestead, FL, USA, 2010 (CP801)	2 (14)	120, 120	190, 190	14	0.56 (0.30, 0.82)	< 0.02 (< 0.02, < 0.02)	0.02 (0.01, 0.02)	< 0.01 (< 0.01, < 0.01)	0.58 (0.31, 0.84)	
Belle Glade, FL, USA, 2010 (CP- 89-2143)	2 (14)	120, 120	190, 190	14	1.3 (2.2, 0.50)	< 0.02 (< 0.02, < 0.02)	0.01 (< 0.01, 0.02)	< 0.01 (< 0.01, < 0.01)	1.4 (2.2, 0.52)	
Belle Glade, FL, USA, 2010 (CP- 96-1252)	2 (14)	120, 120	190, 190	14	< 0.01 (< 0.01, < 0.01)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	
Belle Glade, FL, USA, 2010 (CP- 88-1762)	2 (14)	1 <u>20,</u> 120	190, 190	14	0.73 (1.1, 0.32)	< 0.02 (< 0.02, < 0.02)	0.03 (0.04, 0.02)	< 0.01 (< 0.01, < 0.01)	0.77 (1.2, 0.34)	
	2 (14)	640, 630	190, 190	14	2.1 (1.5, 2.7)	< 0.02 (< 0.02, < 0.02)	0.06 (0.10, < 0.01)	< 0.01 (0.01, < 0.01)	2.1 (1.6, 2.7)	

Table 41	Residues	of fluxapy	vroxad	and its	metabolites	in sugar	cane
						0.0	

No residues of metabolites were detected in the untreated control samples, while residues of fluxapyroxad at levels < LOQ were found at four of the eight trial sites

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

Tree nuts

Five trials each in <u>almonds</u> and <u>pecans</u> were conducted in the USA (Wyatt, 2012). Three foliar applications of a 62.5 g/L EC formulation were made at each site using an airblast sprayer. A spray adjuvant was included for all applications. Duplicate samples of treated kernels were collected a target interval of 14 days after the last application, with samples being collected at additional intervals from some sites to generate decline data.

Table 42 Residues of fluxapyroxad and metabolites in almond kernels

Location, Year (variety)	Applicati on				Residues, mg equivalents	/kg parent			
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F0 02	M700F0 08	M700F0 48	Total ^a
Strathmore, CA, USA, 2011 (Nonpareil)	3 (7, 8)	130, 120, 120	950, 910, 700	14	0.01 (0.01, 0.01)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.01 (0.01, 0.01)
				22	0.015 (0.01, 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.015 (0.01, 0.02)

Location, Year (variety)	Applicati on				Residues, mg. equivalents	/kg parent			
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F0 02	M700F0 08	M700F0 48	Total ^a
				27	0.01 (< 0.01, 0.01)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.01 (0.01, < 0.01)
				32	0.015 (0.02, 0.01)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.015 (0.02, 0.01)
				38	$\frac{0.02}{0.02}$ (0.02, 0.02)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	
Dinuba, CA, USA, 2011 (Carmel)	3 (7, 7)	120, 120, 130	830, 810, 830	14	<pre>< 0.01 (< 0.01, < 0.01)</pre>	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<pre>< 0.01 (< 0.01 , < 0.01)</pre>
Poplar, CA, USA, 2011 (Carmel)	3 (7, 8)	130, 130, 120	670, 620, 660	13	 < 0.01 (< 0.01, < 0.01) 	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<pre>< 0.01 (< 0.01 , < 0.01)</pre>
Wasco, CA, USA, 2011 (Price)	3 (8, 6)	130, 120, 120	760, 740, 740	14	$\frac{0.01}{0.01}$ (0.01, 0.01)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.01</u> (0.01, 0.01)
Buttonwillo w, CA, USA, 2011 (Monterey)	3 (7, 7)	130, 130, 120	810, 850, 810	14	<pre>< 0.01 (< 0.01, < 0.01)</pre>	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<pre>< 0.01 (< 0.01 , < 0.01)</pre>

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

Location, Year (variety)	Applicati on				Residues, mg equivalents	/kg parent			
	No. (RTI,	Rate, k	Spray	DAL	Fluxapyrox	M700F0	M700F0	M700F0	Total ^a
	days)	g ai/ha	volume	А	ad	02	08	48	
		0	(L/ha)						
Bailey, NC,	3 (7, 6)	130,	660,	14	< 0.002	< 0.02	< 0.01	< 0.01	< 0.01
USA, 2011		130,	680,		(< 0.002,	(< 0.02,	(< 0.01,	(< 0.01,	(< 0.01,
(Stuart)		120	650		< 0.002)	< 0.02)	< 0.01)	< 0.01)	< 0.01)
Mystic, GA,	3 (7, 7)	120,	880,	14	< 0.002	< 0.02	< 0.01	< 0.01	< 0.01
USA, 2011		120,	860,		(< 0.002,	(< 0.02,	(< 0.01,	(< 0.01,	(< 0.01,
(Sumner)		130	870		< 0.002)	< 0.02)	< 0.01)	< 0.01)	< 0.01)
Alexandria,	3 (7, 7)	140,	780,	14	<u>< 0.01</u>	< 0.02	< 0.01	< 0.01	<u>< 0.01</u>
LA, USA, 2011		130,	760,		(< 0.01,	(< 0.02,	(< 0.01,	(< 0.01,	(< 0.01,
(Creek)		130	730		< 0.01)	< 0.02)	< 0.01)	< 0.01)	< 0.01)
Pearsall, TX,	3 (7, 7)	120,	620,	14	<u>< 0.01</u>	< 0.02	< 0.01	< 0.01	<u>< 0.01</u>
USA, 2011		120,	650,		(< 0.01,	(< 0.02,	(< 0.01,	(< 0.01,	(< 0.01,
(Desirable)		120	780		< 0.01)	< 0.02)	< 0.01)	< 0.01)	< 0.01)
				20	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01
					(< 0.01,	(< 0.02,	(< 0.01,	(< 0.01,	(< 0.01,
					< 0.01)	< 0.02)	< 0.01)	< 0.01)	< 0.01)
				29	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01
					(< 0.01,	(< 0.02,	(< 0.01,	(< 0.01,	(< 0.01,
					< 0.01)	< 0.02)	< 0.01)	< 0.01)	< 0.01)
				30	< 0.002	< 0.02	< 0.01	< 0.01	< 0.01
					(< 0.002,	(< 0.02,	(< 0.01,	(< 0.01,	(< 0.01,
					< 0.002)	< 0.02)	< 0.01)	< 0.01)	< 0.01)
				37	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01
					(< 0.01,	(< 0.02,	(< 0.01,	(< 0.01,	(< 0.01,
					< 0.01)	< 0.02)	< 0.01)	< 0.01)	< 0.01)

Location, Year (variety)	Applicati on				Residues, mg equivalents	/kg parent			
	No. (RTI, days)	Rate, k g ai/ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F0 02	M700F0 08	M700F0 48	Total ^a
Anton, TX, USA, 2011 (Western Schley)	3 (7, 7)	120, 130, 130	740, 760, 760	14	$\frac{0.03}{0.03}(0.03, 0.03)$	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.03</u> (0.03, 0.03)

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

Cotton

A series of residue trials in <u>cotton</u> were conducted in the USA (Schreier, 2014). Three foliar applications of a 62.5 g/L EC formulation of fluxapyroxad were made at a target rate of 0.1 kg ai/ha and a target interval of 7 days using hand held or tractor-mounted equipment. The plots were harvested at maturity by hand or by mechanical picker, then bolls were ginned to generate undelinted seed samples, with additional gin by-products samples from three sites (see below).

Table 44 Residues of fluxapyroxad and its metabolites in cottonseed

Location, Year (variety)	Applicat	ion		Residues, mg/kg, parent equivalents				
	No. (RTI, days)	Rate, g ai/ha	Spray volume (L/ha)	DALA	Fluxapyroxa d	M700 F008	M700 F048	Total ^a
Sycamore, GA, USA, 2013 (PHY 375)	3 (5, 7)	100, 100, 99	160, 170, 170	30	$\frac{0.07}{0.09}(0.05,$	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.07}{0.09}$ (0.05,
Cheneyville, LA, USA, 2013 (Phytogen 499)	3 (7, 7)	100, 100, 100	170, 160, 150	29	$\frac{0.11}{0.10}(0.11,$	0.01 (0.01, 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.12}{0.11}$ (0.12, 0.11)
Washington, LA, USA, 2013 (PHY 375)	3 (7, 7)	100, 100, 100	150, 150, 140	31	$\frac{0.01}{0.02} (< 0.01,$	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.01}{0.02} (< 0.01, \\ 0.02)$
St Landry, LA, USA, 2013 (Stoneville 5288)	3 (7, 7)	100, 100, 100	150, 150, 140	31	$\frac{0.01}{0.02} (< 0.01,$	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$ \underbrace{0.01}_{0.02} (< 0.01, $
Lebanon, OK, USA, 2013 (FM 2011 GT)	3 (7, 7)	100, 100, 100	140, 140, 140	28	$\frac{0.13}{0.11}(0.14,$	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.13}{0.11}(0.14,$
Claude, TX, USA, 2013 (FM 9250)	3 (4, 4)	99, 100, 99	140, 140, 140	32	<u>0.09</u> (0.10, 0.07)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.09</u> (0.10, 0.07)
Groom, TX, USA, 2013 (FM 2011 GT)	3 (4, 4)	100, 99, 98	140, 140, 140	32	$\frac{0.11}{0.09}(0.12,$	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{0.11}{0.09}(0.12,$
Groom, TX, USA, 2013 (FM 2011 GT)	3 (4, 4)	99. 99, 99	140, 140, 140	35	0.07 (0.10, 0.05)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.002)	0.07 (0.10, 0.05)
Groom, TX, USA, 2013 (FM 9250)	3 (4, 4)	100, 99, 99	140, 140, 140	32	0.02 (0.03, 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.02 (0.03, 0.02)
Sanger, CA, USA, 2013 (Pima)	3 (7, 7)	99, 100, 100	140, 140, 150	39	$\frac{0.03}{0.03}$ (0.03, 0.03)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.03</u> (0.03, 0.03)
Sanger, CA, USA, 2013 (FM 835 LLB 2)	3 (7, 7)	100, 100, 100	150, 140, 150	30	0.02 (0.01, 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.02 (0.01, 0.02)
Fresno, CA, USA, 2013 (Acala)	3 (7, 7)	100, 95, 100	140, 140, 150	31	< <u>0.01</u> (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	< <u>0.01</u> (< 0.01, < 0.01)

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

Animal feeds

Rice straw

Table 45 Residues of fluxapyroxad and metabolites in rice straw

Location, Year (variety) Dry matter content [%]	Applicat	tion			Residues, mg/kg, parent equivalents. Residues on a dry weight basis are shown in square brackets for parent compound and total residues only.					
	No. (RTI, days)	Rate, g ai/ha	Spray volume (L/ha)	DA LA	Fluxapyrox ad	M700 F002	M700 F008	M700 F048	Total ^a	
Screeton, AR, USA, 2011 (Jupiter) [27.8]	2 (7)	150, 150	190, 190	28	0.51 (0.36, 0.65 [<u>1.8</u> (1.3, 2.3)]	< 0.02 (< 0.02, < 0.02)	0.02 (< 0.01, 0.02)	< 0.01 (< 0.01, < 0.01)	0.52 (0.36, 0.67) [<u>1.9</u> (1.3, 2.4)]	
Lonoke, AR, USA, 2011 (CL142AR) [33.8]	2 (7)	160, 150	190, 190	28	2.3 (2.5, 2.1) [<u>6.8</u> (7.5, 6.1)]	< 0.02 (< 0.02, < 0.02)	0.04 (0.04, 0.04)	0.04 (0.03, 0.04)	2.4 (2.6, 2.1) [<u>7.0</u> (7.7, 6.3)]	
Washington, LA, USA, 2011 (Cocodrie) [32.1]	2 (7)	160, 150	200, 200	28	2.3 (2.7, 2.0) [<u>7.3</u> (8.4, 6.2)]	< 0.02 (< 0.02, < 0.02)	0.03 (0.03, 0.02)	< 0.01 (0.01, < 0.01)	2.4 (2.7, 2.0) [<u>7.4</u> (8.5, 6.3)]	
Cheneyville, LA, USA, 2011 (Cheniere) [27.5]	2 (7)	150, 140	130, 140	28	2.8 (2.6, 3.0) [<u>10</u> (9.3, 11)]	< 0.02 (< 0.02, < 0.02)	0.03 (0.02, 0.03)	< 0.01 (< 0.01, < 0.01)	2.8 (2.6, 3.1) [<u>10</u> (9.4, 11)]	
Delaplaine, AR, USA, 2011 (CLXL 745) [68.6]	2 (8)	150, 150	190, 190	28	0.91 (0.85, 0.97) [1.3 (1.2, 1.4)]	< 0.02 (< 0.02, < 0.02)	0.02 (0.01, 0.02)	< 0.01 (< 0.01, < 0.01)	0.93 (0.86, 0.99) [<u>1.4</u> (1.3, 1.4)]	
Delaplaine, AR, USA, 2011 (CLXL 745) [26.7]	2 (6)	150, 160	47, 47	28	0.68 (0.61, 0.74) [<u>2.5</u> (2.3, 2.8)]	< 0.02 (< 0.02, < 0.02)	0.01 (0.01, 0.01)	< 0.01 (< 0.01, < 0.01)	0.69 (0.62, 0.75) [<u>2.6</u> (2.3, 2.8)]	
Pollard, AR, USA, 2011 (CL 111) [25.8, day 0; 33.1, day 28]	2 (6)	150, 150	190, 190	0	4.7 (4.7, 4.7) [18 (18, 18)]	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	4.7 (4.7, 4.7) [18 (18, 18)]	
				14	0.86 (0.93, 0.78) [3.3 (3.6, 3.0)]	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.86 (0.93, 0.78) [3.3 (3.6, 3.0)]	
				28	0.95 (0.90, 0.99) [<u>2.9</u> (2.7, 3.0)]	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.95 (0.90, 0.99) [<u>2.9</u> (2.7, 3.0)]	
				30	0.83 (0.88, 0.77) [2.5 (2.7, 2.3)]	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.83 (0.88, 0.77) [2.5 (2.7, 2.3)]	
				36	0.68 (0.68, 0.67) [2.0 (2.1, 2.0)]	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.68 (0.68, 0.67) [2.0 (2.1, 2.0)]	
Campbell, MO, USA, 2011 (Wells) [34.6]	2 (8)	150, 150	190, 190	28	0.52 (0.51, 0.52) [<u>1.5</u> (1.5,	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	<0.01 (<0.01, <0.01)	0.52 (0.51, 0.52) [<u>1.5</u> (1.5,	

Location, Year (variety) Dry matter content [%]	Applicat	tion			Residues, mg/kg, parent equivalents. Residues on a dry weight basis are shown in square brackets for parent compound and total residues only.					
	No. (RTI, days)	Rate, g ai/ha	Spray volume (L/ha)	DA LA	Fluxapyrox ad	M700 F002	M700 F008	M700 F048	Total ^a	
					1.5)]				1.5)]	
Fisk, MO, USA, 2011 (CL 151) [27.2, day 0; 31.5, day 28]	2 (8)	150, 150	190, 190	0	3.6 (3.2, 4.0) [13 (12, 15)]	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	3.6 (3.2, 4.0) [13 (12, 15)]	
				14	0.74 (0.82, 0.65) [2.7 (3.0, 2.4)]	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.74 (0.82, 0.65) [2.7 (3.0, 2.4)]	
				28	0.56 (0.63, 0.49) [1.8 (2.0, 1.6)]	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.56 (0.63, 0.49) [1.8 (2.0, 1.6)]	
				30	$\begin{array}{c} 0.59 \ (0.49, \\ 0.69) \\ \underline{1.9} \ (1.6, \\ 2.2)] \end{array}$	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.59 (0.49, 0.69) [<u>1.9</u> (1.6, 2.2)]	
				35	0.50 (0.47, 0.53) [1.6 (1.5, 1.7)]	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.50 (0.47, 0.53) [1.6 (1.5, 1.7)]	
Qulin, MO, USA, 2011 (CLXL 745) [29.5]	2 (7)	160, 150	47, 47	29	2.0 (2.1, 2.0) [<u>6.9</u> (6.9, 6.8)]	< 0.02 (< 0.02, < 0.02)	0.03 (0.02, 0.03)	< 0.01 (< 0.01, < 0.01)	2.1 (2.1, 2.0) [<u>7.0</u> (7.1, 6.9)]	
Glennonville, MO, USA, 2011 (CL 151) [23.9]	2 (6)	150, 150	47, 47	28	$ \begin{array}{c} 1.0 (1.2, \\ 0.82) \\ [\underline{4.2} (5.0, \\ 3.4)] \end{array} $	< 0.02 (< 0.02, < 0.02)	0.02 (0.02, 0.01)	< 0.01 (< 0.01, < 0.01)	$ \begin{array}{c} 1.0 (1.2, \\ 0.82) \\ [\underline{4.2} (5.1, \\ 3.4)] \end{array} $	
Dudley, MO, USA, 2011 (CL 111) [25.3]	2 (7)	150, 150	190, 190	28	$ \begin{array}{c} 1.0 (1.1, \\ 0.98) \\ [\underline{4.0} (4.2, \\ 3.9)] \end{array} $	< 0.02 (< 0.02, < 0.02)	0.02 (0.02, 0.02)	< 0.01 (< 0.01, < 0.01)	$1.1 (1.1, 1.0) \\ [\underline{4.2} (4.3, 4.0)]$	
Markham, TX, USA, 2011 (Cocodrie) [80]	2 (7)	160, 150	190, 180	28	2.9 (3.6, 2.2) [<u>3.6</u> (4.5, 2.7)]	< 0.02 (< 0.02, < 0.02)	0.08 (0.09, 0.06)	0.06 (0.06, 0.05)	3.0 (3.8, 2.3) [<u>3.8</u> (4.7, 2.9)]	
El Campo, TX, USA, 2011 (Cocodrie) [76.9]	2 (7)	150, 150	190, 180	28	2.4 (2.0, 2.8) [<u>3.1</u> (2.6, 3.6)]	< 0.02 (< 0.02, < 0.02)	0.06 (0.06, 0.05)	0.05 (0.05, 0.05)	2.5 (2.1, 2.9) [<u>3.2</u> (2.7, 3.7)]	
Porterville, CA, USA, 2011 (Koshihikari) [39.1]	2 (6)	150, 150	190, 190	29	2.0 (1.4, 2.7) [<u>5.2</u> (3.6, 6.8)]	< 0.02 (< 0.02, < 0.02)	0.08 (0.06, 0.10)	< 0.01 (< 0.01, < 0.01)	2.1 (1.5, 2.8) [<u>5.4</u> (3.8, 7.1)]	
Yuba City, CA, USA, 2011 (M206) [34.3]	2 (7)	150, 150	230, 230	29	15 (17, 13) [<u>42</u> (48, 37)]	< 0.02 (< 0.02, < 0.02)	0.02 (0.02, 0.01)	< 0.01 (< 0.01, < 0.01)	14.6 (16.6, 12.5) [<u>42</u> (48, 37)]	

No residues of metabolites were detected in the untreated control samples, while residues of fluxapyroxad at levels < LOQ were found at one of the trial sites

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents.

Sorghum forage and stover

Table 46 Residues from the foliar application of fluxapyroxad to grain sorghum in the USA (White 2010, 2010/7003693)

Study No. Trial No.	Application			Matrix	PHI day	Residues (mg/kg) Residues on a dry weight basis are shown in square brackets for mean parent compound and total residues only.							
Country Year (Variety)	N o	Interva l Days	g ai/h a	Water (L/ha)	(% moisture)	S	Fluxapyroxad ^a		M700F00 2	M700F00 M700F04 8 8		Total (Fluxapyroxad + M700F008 + M700F048)	
							Individua 1	Mean				Individua 1	Mean
2010/700369	2	7	101	190	Forage	7	0.79	0.72	< LOD	0.01	< 0.01	0.80	0.73
3 RCN			100 201	187	(73.8)		0.65	[<u>2.7</u>]	< LOD	0.01	< 0.01	0.66	[2.8]
R080440 USA	2	7	100	188	Stover	21	0.44	0.42	< LOD	0.02	< 0.01	0.46	0.45
(Butler, Missouri) 2008 (LGX-47)			201	189	(66.7)		0.40	[<u>1.3</u>]	< LOD	0.02	0.02	0.43	[1.4]
2010/700369	2	7	99	275	Forage	7	1.41	1.4	< LOD	0.02	< 0.01	1.43	1.5
3 RCN			100 199	286	(58.7)		1.46	[<u>3.5]</u>	< LOD	0.02	< 0.01	1.48	[3.5]
R080441	2	7	100	274	Stover	20	0.89	0.83	< LOD	0.02	< LOD	0.91	0.85
(Ottawa, Michigan) 2008 (9135)			99 199	270	(70.8)		0.77	[<u>2.8]</u>	< LOD	0.01	< LOD	0.78	[2.9]
2010/700369	2	8	100	187	Forage	6	0.77	0.79	< LOD	0.03	< 0.01	0.80	0.83
3 RCN			200	187	(72.8)		0.81	[<u>2.9]</u>	< LOD	0.04	< 0.01	0.85	[<u>3.1]</u>
R080442	2	7	100	187	Stover	21	0.34	0.35	< LOD	0.03	< 0.01	0.37	0.39
(Cass, North Dakota) 2008 (WGF)			100 200	190	(77.9)		0.35	[<u>1.6</u>]	< LOD	0.04	0.02	0.40	[<u>1.8</u>]
2010/700369 3 RCN R080443 USA (Caddo, Oklahoma)	2	8	99 98 197	131 175	Forage (66.0)	7	2.22	2.3 [<u>7.0</u>]	< LOD	0.04	0.02	2.27	2.3 [<u>7.1</u>]
2008		-			-		2.37		< LOD	0.04	0.02	2.42	
(753)	2	6	99 102 201	178 234	Stover	23	0.46 0.33	0.40 [<u>1.6]</u>	< LOD < LOD	0.02	0.02	0.49 0.36	0.43 [<u>1.8]</u>
2010/700369	2	6	99	129	Forage	7	1.21	1.2	< LOD	0.04	0.04	1.28	1.2
3 RCN			102 201	137	(61.6)		1.15	[<u>3.1]</u>	< LOD	0.04	0.03	1.21	[<u>3.2</u>]
R080444 USA	2	7	100	134	Stover	20	0.71	0.75	< LOD	0.03	0.04	0.77	0.81
(Wharton, Texas) 2008 (84G50)			201	155	(69.4)		0.79	[2.3]	< LOD	0.03	0.03	0.84	[<u>2.0</u>]
2010/700369	2	7	97	184	Forage	7	0.70	0.94	< LOD	0.04	0.01	0.75	1.0
3 RCN			101 198	193	(85.4)		1.18	[<u>6.4]</u>	< LOD	0.06	0.03	1.26	[<u>6.8]</u>
Study No. Trial No.	Ap	plication		Matrix	PHI day	Residues (brackets fo	(mg/kg or mea) Residues on parent con	on a dry wei npound and	ght basis are total residue	e shown in es only.	square	
---	--------	----------------------	------------------	---------------------	---------------------	---------------------------	---------------------------	--------------------------	--	--------------------------------	------------------------	---	-----------------------
Country Year (Variety)	N o	Interva l Days	g ai/h a	Water (L/ha)	(% moisture)	S	Fluxapyroxad ^a		M700F00 2	M700F00 8	M700F04 8	Total (Fluxapyroxad + M700F008 + M700F048)	
							Individua l	Mean				Individua 1	Mean
R080445 USA (Clarke, Georgia) 2008 (82G10)	2	7	99 101 200	273 254	Stover (59.4)	21	0.89	1.0 [2.5]	< LOD < LOD	0.02	0.02	0.92	1.1 [<u>2.6</u>]
2010/700369	2	7	102	191	Forage	6	0.38	0.45	< LOD	0.04	0.01	0.43	0.50
3 RCN			101 203	188	(74.7)		0.51	[<u>1.8</u>]	< LOD	0.04	0.01	0.56	[<u>2.0]</u>
R080446	2	7	99	186	Stover	22	0.17	0.20	< LOD	< LOD	< LOD	0.17	0.20
(York, Nebraska) 2008 (7R34)			100 199	187	(72.1)		0.23	[0.72]	< LOD	< LOD	< LOD	0.23	[0.72]
2010/700369	2	7	102	191	Forage	7	0.43	0.47	< LOD	0.02	< 0.01	0.45	0.49
3 RCN			100 202	188	(68.4)		0.50	[<u>1.5]</u>	< LOD	0.02	< 0.01	0.52	[<u>1.6</u>]
R080447	2	7	99	186	Stover	21	0.54	0.66	<lod< td=""><td>0.02</td><td>< 0.01</td><td>0.56</td><td>0.69</td></lod<>	0.02	< 0.01	0.56	0.69
(Pawnee, Kansas) 2008 (84G62)			100 199	187	(68.7)		0.77	[<u>2.1</u>]	< LOD	0.03	0.01	0.81	[<u>2.2</u>]
2010/700369	2	7	99	185	Forage	7	0.54	0.56	< LOD	0.03	< 0.01	0.57	0.59
3 RCN			101 200	189	(75.2)		0.57	[<u>2.3]</u>	< LOD	0.03	< 0.01	0.60	[<u>2.4</u>]
R080448	2	7	104	194	Stover	21	0.97	0.87	< LOD	0.04	< LOD	1.01	0.91
(Stafford, Kansas) 2008 (84G62)			97 201	182	(72.6)		0.77	[<u>3.2</u>]	< LOD	0.03	< 0.01	0.80	[<u>3.3]</u>

^a All analytes are reported in terms of themselves. Total residues ((Fluxapyroxad + M700F008 + M700F048) are expressed as parent equivalents

LOQ is 0.01 mg/kg for each of parent fluxapyroxad and metabolites M700F008, M700F002 and M700F048 LOD is 0.002 mg/kg for each of parent fluxapyroxad and metabolites M700F008, M700F002 and M700F048 Moisture content was determined for selected control samples using an infrared moisture determination balance

Almond hulls

Table 47 Residues of fluxapyroxad and metabolites in almond hulls

Location, Year (variety)	Applicati on				Residues, mg equivalents	/kg parent			
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F0 08	M700F04 8	Total ^a
Strathmore, CA, USA, 2011 (Nonpareil)	3 (7, 8)	130, 120, 120	950, 910, 700	14	1.2 (1.2, 1.3)	< 0.02 (< 0.02, < 0.02)	0.01 (< 0.01, 0.01)	< 0.01 (< 0.01, < 0.01)	1.2 (1.2, 1.3)

Location, Year (variety)	Applicati on				Residues, mg equivalents	/kg parent			
	No. (RTI, days)	Rate, g ai/ ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700F00 2	M700F0 08	M700F04 8	Total ^a
				22	1.3 (1.2, 1.4)	< 0.02 (< 0.02, < 0.02)	0.02 (0.02, 0.02)	< 0.01 (< 0.01, < 0.01)	1.3 (1.2, 1.4)
				27	0.75 (0.78, 0.71)	< 0.02 (< 0.02, < 0.02)	0.02 (0.02, 0.01)	< 0.01 (< 0.01, < 0.01)	0.76 (0.80, 0.72)
				32	0.96 (0.99, 0.92)	< 0.02 (< 0.02, < 0.02)	0.02 (0.01, 0.02)	< 0.01 (< 0.01, < 0.01)	0.97 (1.0, 0.94)
				38	$\frac{1.4}{1.4}(1.3, 1.4)$	< 0.02 (< 0.02, < 0.02)	0.02 (0.02, 0.02)	0.01 (0.01, < 0.01)	$\frac{1.4}{(1.4, 1.4)}$
Dinuba, CA, USA, 2011 (Carmel)	3 (7, 7)	120, 120, 130	830, 810, 830	14	<u>1.7</u> (1.7, 1.7)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	$\frac{1.7}{(1.7, 1.7)}$
Poplar, CA, USA, 2011 (Carmel)	3 (7, 8)	130, 130, 120	670, 620, 660	13	<u>0.92</u> (0.86, 0.98)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	<u>0.92</u> (0.86, 0.98)
Wasco, CA, USA, 2011 (Price)	3 (8, 6)	130, 120, 120	7 6 0, 740, 740	14	$\frac{1.1}{1.1}$ (1.1, 1.1)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< <u>0.01</u> (< 0.01, < 0.01)	$\frac{1.1}{(1.1, 1.1)}$
Buttonwillow , CA, USA, 2011 (Monterey)	3 (7, 7)	130, 130, 120	810, 850, 810	14	$\frac{0.88}{1.0}$ (0.74,	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.88 (0.74, 1.0)

^aSum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

Cotton gin by-products

Table 48 Residues of fluxapyroxad and metabolites in cotton gin trash

Location, Year (variety)	Applicat	tion		Residues, mg/kg, parent equivalents					
	No. (RTI, days)	Rate, g ai/ha	Spray volume (L/ha)	DAL A	Fluxapyrox ad	M700 F008	M700 F048	Total ^a	
Claude, TX, USA, 2013 (FM 9250)	3	99, 100, 99	140, 140, 140	32	6.9 (7.9, 5.9)	0.02 (0.03, 0.02)	< 0.01 (< 0.01, < 0.01)	6.9 (7.9, 5.9)	
Groom, TX, USA, 2013 (FM 2011 GT)	3	100, 99, 98	140, 140, 140	32	5.2 (5.0, 5.5)	0.01 (0.01, 0.01)	< 0.01 (< 0.01, < 0.01)	5.3 (5.0, 5.5)	
Groom, TX, USA, 2013 (FM 2011 GT)	3	99, 99, 99	140, 140, 140	35	8.0 (7.6, 8.4)	0.03 (0.02, 0.03)	< 0.01 (< 0.01, < 0.01)	8.1 (7.7, 8.5)	

No residues were detected in the untreated control samples

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

Citrus

A processing study in <u>oranges</u> was conducted in Brazil (Guimaraes, 2014-b). At four field trial sites, three applications of an SC formulation containing 333 g/L pyraclostrobin and 167 g/L fluxapyroxad were made by foliar airblast application at a target rate of 0.5 kg ai/ha pyraclostrobin + 0.25 kg ai/ha fluxapyroxad and a target interval of 28 days. Fruit was collected 14 days after the last application.

Oranges were processed into juice, dried pulp and oil using simulated commercial procedures. Untreated control samples were processed prior to the treated samples. Samples for processing (around 250 kg per sample) were first washed using an industrial water bath equipped with rotary brushes. The cleaned oranges were then juiced using a commercial machine (JBT model HP 391 citrus juice extractor). This juices the oranges by compressing the fruit between two cups with sharpened metal tubes at their bases. A water spray was maintained to separate the oil as an emulsion, with the oil separated from the wash water by centrifuging and decanting. The pulp/juice mixture was separated in a commercial finisher (JBT model UCF 35).

Residues of fluxapyroxad and its metabolites were determined using LC-MS/MS method number L0137/01. Processing was completed within a day of sample collection, and both raw orange and processed commodity samples were frozen within 24 hours of collection. Analyses were completed within 3 months of harvest of the raw oranges.

Location, Year (variety)	Applica	tion			Residues, mg/kg, parent equivalents					
	No. (RTI, days)	Rate , g ai/ha	Spray volume (L/ha)	DA LA	Sample	Fluxapyro xad	M700 F002	M700 F008	M700 F048	Total ^a
San Antonio de Posse, Sao Paolo, Brazil, 2013 (Natal em Swingle)	3 (28, 28)	250, 250, 240	2000, 1980, 1940	14	Raw oranges	0.17	< 0.02	< 0.01	< 0.01	0.17
					Dried pulp	0.02	< 0.02	< 0.01	< 0.01	0.02
					Orange juice	< 0.01	< 0.02	< 0.01 c< 0.0 1	< 0.01	< 0.01
					Orange oil	9.9 c0.01	< 0.02	0.03	< 0.01	9.9
Aguai, Sao Paolo, Brazil, 2013 (Lima Verde)	3 (28, 28)	240, 230, 240	1890, 1850, 1930	14	Raw oranges	0.23	< 0.02	< 0.01	< 0.01	0.23
					Dried pulp	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01
					Orange juice	< 0.01	< 0.02	<0.01 c<0.0 1	< 0.01	< 0.01
					Orange oil	3.2	< 0.02	< 0.01	< 0.01	3.2
Mogi Mirim, Sao Paolo, Brazil, 2013 (Pera Coroa)	3 (28, 28)	250, 250, 250	2000, 1970, 1980	14	Raw oranges	0.40	< 0.02	< 0.01	< 0.01	0.40
					Dried pulp	0.03	< 0.02	< 0.01	< 0.01	0.03
					Orange juice	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01

Table 49 Residues of fluxapyroxad and metabolites in raw oranges and processed fractions

Location, Year (variety)	Applicat	tion			Residues, mg/kg, parent equivalents						
	No. (RTI, days)	Rate , g ai/ha	Spray volume (L/ha)	DA LA	Sample	Fluxapyro xad	M700 F002	M700 F008	M700 F048	Total ^a	
					Orange oil	8.7 c< 0.01	< 0.02	< 0.01	< 0.01	8.7	
Limeira, Sao Paolo, Brazil, 2013 (Pera Coroa)	3 (28, 28)	250, 240, 250	2000, 1920, 2030	14	Raw oranges	0.19	< 0.02	< 0.01	< 0.01	0.19	
					Dried pulp	0.02	< 0.02	< 0.01	< 0.01	0.02	
					Orange juice	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	
					Orange oil	6.2	< 0.02	< 0.01	< 0.01	6.2	

Residues were generally not found in the untreated control samples. Where residues were found in the untreated control samples, these are indicated with a 'c' prefix

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

Table 50 Processing factors for fluxapyroxad in oranges

Commodity	Processing factor	Processing factor									
	Parent only	Total residues									
Dried pulp	< 0.04, 0.08, 0.11, 0.12 (median = 0.095)	< 0.04, 0.08, 0.11, 0.12 (median = 0.095)									
Juice	< 0.03, < 0.04, < 0.05, < 0.06 (median = 0.045)	< 0.03, < 0.04, < 0.05, < 0.06 (median =									
		0.045)									
Oil	14, 22, 33, 58 (median = 27.5)	14, 22, 33, 58 (median = 27.5)									

Grape

A processing study in grapes was conducted in the USA (Belcher and Riley, 2012-b).

At two sites, grapevines were treated with three foliar airblast applications of a 300 g/L SC formulation of fluxapyroxad at a target rate of 0.4 kg ai/ha and a target interval of 10 days. Two plots, one each of a red and a white grape variety, were treated at each site using the same application regime. Grape samples were collected 14 days after the last application.

Grapes were processed using methods simulating commercial processes as far as possible. The grapes (40–80 kg per sample for processing) were first crushed using a crusher/de-stemmer, and the stems were separated and for red grapes only, the stems and initial crush were sampled. The crush was then subdivided into portions for juice and wine making.

The crushed grapes (approx. 10-25 kg of crush were reserved for juicing) were transferred to a steam-jacketed kettle and heated to 52-57 °C for 8-12 minutes, and then to 60-66 °C for 8-12 minutes. The grape pulp was then pressed using a hydraulic fruit press, and wet pomace was separated. The fresh juice was filtered and pasteurised (79-85 °C for 15-30 seconds). Pasteurised juice was sampled.

For white/rosé winemaking, was approximately 20–35 kg of grape crush were transferred to a kettle, treated with pectic enzyme and potassium metabisulphite and allowed to stand for 1 hour, prior to pressing with a hydraulic press. Primary fermentation was conducted in a 5-gallon container. Yeast was added, and the container allowed to stand overnight at approximately 21 °C. The wine was racked to separate the lees, and transferred to glass carboys for secondary fermentation at approximately 13 °C until the specific gravity reached approximately 1.03. Once

carbon dioxide formation had ceased indicating completion of fermentation, the wine was racked again and gelatin added for fining. The wine was then racked a final time, and filtered through diatomaceous earth before sampling.

For red winemaking, the process was similar to white winemaking, with the addition of a step after the initial crushing and separation of the stems where the juice/pulp mixture was heated to approximately 60 $^{\circ}$ C to impart colour to the wine, then cooled to approximately 21 $^{\circ}$ C before addition of the enzyme and sodium metabisulphite. The processing then proceeded as for the white/rosé wine.

For generation of the raisin samples, grapes were harvested and sun dried in the field for 3-13 days before sampling (approx. 1.0-1.3 kg of sun dried grapes per sample). At the processing facility, the raisins were hand sorted to remove loose dirt and debris, stems, panicles and substandard raisins. The cleaned raisins were then spray washed in batches to remove any residual dirt and to raise the water content to $\leq 18\%$. The raisins were drained and dried if necessary to achieve the desired water content.

Residues of fluxapyroxad and its metabolites were determined using LC-MS/MS method number L0137/01. Processing of raw grapes into juice and wine commenced within 1–3 days of harvest, while processing of the sun dried raisins took place around 4–6 weeks after sampling. Raw grape samples for analysis were frozen within 4 hours of collection. Grapes for processing into juice and wine were shipped to the processor at ambient temperature and stored in a cooler pending processing. Raisins were shipped to the processor at ambient temperature, and stored frozen pending further processing. On completion of processing, processed commodity samples were frozen pending analysis. All analyses were completed within 5 months of harvest of the grapes.

Location, Year (variety)	Application				Residues, mg/kg, as parent equivalents					
	No. (RTI, days)	Rate , g ai/ha	Spray volume (L/ha)	DA LA	Sample	Fluxapyro xad	M700 F002	M700 F008	M700 F048	Total ^a
Yates, NY, USA, 2011 (Concord)	3 (10, 11)	400, 400, 400	930, 940, 940	13	Raw grapes (in field)	0.93	< 0.02	< 0.01	< 0.01	0.93
					Raw grapes (pre- processi ng)	0.53	< 0.02	< 0.01	< 0.01	0.53
					Stalks	2.6	< 0.02	< 0.01	< 0.01	2.6
					Crush	0.41	< 0.02	< 0.01	< 0.01	0.41
					Must	0.09	< 0.02	< 0.01	< 0.01	0.09
					Pomace (wet)	3.8	< 0.02	< 0.01	< 0.01	3.8
					Must deposit	0.42	< 0.02	< 0.01	< 0.01	0.42
					Separate d must	0.16	< 0.02	< 0.01	< 0.01	0.16
					Pasteuri sed juice	0.22	< 0.02	< 0.01	< 0.01	0.22
					Yeast deposit	2.7 (3.7, 1.8)	< 0.02	< 0.01	< 0.01	2.7 (3.7, 1.8)
					Red wine	0.11	< 0.02	< 0.01	< 0.01	0.11
					Raisins	5.4	< 0.02	< 0.01	< 0.01	5.4
Yates, NY, USA, 2011 (Vidal)	3 (10, 9)	400, 400, 400	940, 940, 950	13	Raw grapes (in field)	1.5	< 0.02	< 0.01	< 0.01	1.5
					Raw grapes (pre- processi	0.81	< 0.02	< 0.01	< 0.01	0.81
					Must	0.24	< 0.02	< 0.01	< 0.01	0.24
					Pomace	4.6	< 0.02	< 0.01	< 0.01	4.6
					Must deposit	1.1	< 0.02	< 0.01	< 0.01	1.1
					Separate d must	0.30	< 0.02	< 0.01	< 0.01	0.30
					Pasteuri sed juice	0.37	< 0.02	< 0.01	< 0.01	0.37
					Yeast deposit	3.4 (3.7, 3.2)	< 0.02	< 0.01	< 0.01	3.4
					Rosé wine	0.18	< 0.02	< 0.01	< 0.01	0.18
					Raisins	4.3	< 0.02	< 0.01	< 0.01	4.3
Madera, CA, USA, 2011 (Ruby Red)	3 (9, 11)	400, 400, 400	470, 4 70, 470	14	Raw grapes (in	0.60	< 0.02	< 0.01	< 0.01	0.60

Table 51 Residues of fluxapyroxad and metabolites in raw grapes and processed fractions

Location, Year (variety)	Application				Residues, mg/kg, as parent equivalents						
	No. (RTI, days)	Rate , g ai/ha	Spray volume (L/ha)	DA LA	Sample	Fluxapyro xad	M700 F002	M700 F008	M700 F048	Total ^a	
					field)						
					Raw grapes (pre- processi ng)	0.37	< 0.02	< 0.01	< 0.01	0.37	
					Stalks	2.6	< 0.02	< 0.01	< 0.01	2.6	
					Crush	0.33	< 0.02	< 0.01	< 0.01	0.33	
					Must	0.08	< 0.02	< 0.01	< 0.01	0.08	
					Pomace (wet)	1.5	< 0.02	< 0.01	< 0.01	1.5	
					Must deposit	0.36	< 0.02	< 0.01	< 0.01	0.36	
					Separate d must	0.07	< 0.02	< 0.01	< 0.01	0.07	
					Pasteuri sed juice	0.10	< 0.02	< 0.01	< 0.01	0.10	
					Yeast deposit	0.36	< 0.02	< 0.01	< 0.01	0.36	
					Red wine	0.07	< 0.02	< 0.01	< 0.01	0.07	
					Raisins	1.2	< 0.02	< 0.01	< 0.01	1.2	
Madera, CA, USA, 2011 (Thompson Seedless)	3 (9, 11)	400, 400, 400	460, 470, 470	14	Raw grapes (in field)	0.49	< 0.02	< 0.01	< 0.01	0.49	
					Raw grapes (pre- processi ng)	0.50	< 0.02	< 0.01	< 0.01	0.50	
					Must	0.12 (0.12, 0.12)	< 0.02	< 0.01	< 0.01	0.12 (0.12, 0.12)	
					Pomace	2.4	< 0.02	< 0.01	< 0.01	2.4	
					Must deposit	0.23	< 0.02	< 0.01	< 0.01	0.23	
					Separate d must	0.11 (0.11, 0.11)	< 0.02	< 0.01	< 0.01	0.11 (0.11, 0.11)	
					Pasteuri sed juice	0.11	< 0.02	< 0.01	< 0.01	0.11	
					Yeast deposit	0.65	< 0.02	< 0.01	< 0.01	0.65	
					Rosé wine	0.12	< 0.02	< 0.01	< 0.01	0.12	
					Raisins	1.4	< 0.02	< 0.01	< 0.01	1.4	

Residues were generally not detected in the untreated control samples, except for three detections of parent compound at levels < LOQ

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

Commodity	Processing factor	
	Parent compound	Total residues
Stalks	4.9, 7.0 (median = 5.95)	4.9, 7.0 (median = 5.95)
Grape crush	$0.77, 0.89 \pmod{\text{median} = 0.83}$	$0.77, 0.89 \pmod{\text{median} = 0.83}$
Must	0.17, 0.22, 0.24, 0.30 (median = 0.23)	0.17, 0.22, 0.24, 0.30 (median = 0.23)
Pomace (wet)	4.1, 4.8, 5.7, 7.2 (median = 5.25)	4.1, 4.8, 5.7, 7.2 (median = 5.25)
Must deposit	0.46, 0.79, 0.97, 1.4 (median = 0.88)	0.46, 0.79, 0.97, 1.4 (median = 0.88)
Separated must	0.19, 0.22, 0.30, 0.37 (median = 0.26)	0.19, 0.22, 0.30, 0.37 (median = 0.26)
Pasteurised juice	0.22, 0.27, 0.42, 0.46 (median = 0.345)	0.22, 0.27, 0.42, 0.46 (median = 0.345)
Yeast deposit	0.97, 1.3, 4.2, 5.1 (median = 2.75)	1.0, 1.3, 4.2, 5.1 (median = 2.75)
Red wine	0.19, 0.21 (median = 0.20)	$0.19, 0.21 \pmod{0.20}$
Rosé wine	0.22, 0.24 (median = 0.23)	$0.22, 0.24 \pmod{0.23}$
Raisins	2.8, 3.2, 5.3, 10 (median = 4.25)	2.8, 3.2, 5.3, 10 (median = 4.25)

Table 52 Processing factors for fluxapyroxad in grapes

Sugar cane

A <u>sugar cane</u> processing study was carried out in the USA (Schreier, 2012-b). At a site in Florida, a plot was treated at 2×0.625 kg ai/ha, with a 14-day re-treatment interval, and sample collection 14 days after the last application.

Sugar cane samples (approximately 40 kg) were processed by expelling the juice by multiple passes through an AUM Enterprise cane crusher. The waste (bagasse) was discarded, while the juice was filtered (100 mesh sieve) and adjusted to pH 7.2-7.4 using calcium oxide solution. After stirring for approximately 15 minutes, the juice was brought to approximately 100 °C and held at that temperature for 3 minutes, then centrifuged to separate the 'mud' from 'thin juice'. The thin juice was concentrated to a solids content of 50-60% using a vacuum evaporator, at a temperature of ≤ 70 °C. Further concentration, to a solids content of 75–80%, was carried out at \leq 55 °C. The resulting thick juice was seeded with a small amount of pulverised white sugar to commence the crystallisation process, and the batch cooled in a walk-in refrigerator. Molasses and raw sugar were separated by centrifuge, and the raw sugar was washed in the centrifuge to remove molasses by steaming prior to sampling. Refining was carried out by dissolving the raw sugar in an equal amount of water with stirring. The pH was adjusted to 5.5 with phosphoric acid, and the solution rested for 2 minutes prior to addition of calcium oxide under agitation to adjust the pH to 7.2. The batch was heated to 60 °C. Filter aid was added, and the solution was vacuum filtered. Activated charcoal was added to the filtrate, which was heated and then filtered again. The filtrate was seeded with pulverised sugar and evaporated under vacuum at \leq 55 °C until the boiling slowed. The material was cooled, then dried at 43–55 °C to a moisture content of approximately 3%. Samples of unprocessed cane, molasses, raw sugar and refined sugar were collected and frozen for transport to the laboratory.

The process simulated commercial processing, albeit using a batch rather than a continuous process due to the small amount of material.

Samples of sugar cane and the processed commodities were analysed using LC-MS/MS method number L0137/01. Samples were analysed within 14 months of collection of the raw sugar cane, and within 9 months of finishing the processing phase. Raw sugar cane was stored frozen pending processing, which commenced 4 months after harvest, and was completed within a week (processed samples were frozen after collection).

Table 53 Residues of fluxapyroxad and its metabolites in sugar cane and processed commodities

Location, Year (variety)	Applicat	tion			Residues, mg/kg, parent equivalents							
	No. (RTI, days)	Rate , g ai/ha	Spray volume (L/ha)	DA LA	Sample	Fluxapyro xad	M700 F002	M700 F008	M700 F048	Total ^a		

Location, Year (variety)	Applicat	tion			Residues, mg/kg, parent equivalents						
	No. (RTI, days)	Rate , g ai/ha	Spray volume (L/ha)	DA LA	Sample	Fluxapyro xad	M700 F002	M700 F008	M700 F048	Total ^a	
Belle Glade, FL, USA, 2010 (CP-88-1762)	2 (14)	640, 630	190, 190	14	Sugar cane	2.1 (1.5, 2.7)	< 0.02 (< 0.02, < 0.02)	0.06 (0.10, < 0.01)	< 0.01 (0.01, < 0.01)	2.1 (1.6, 2.7)	
					Sugar cane prior to processi ng	0.24 (0.27, 0.22)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.0 1, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.24 (0.27, 0.22)	
					Molasse s	0.04 (0.04, 0.04)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.0 1, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.04 (0.04, 0.04)	
					Raw sugar	0.06 (0.06, 0.06)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.0 1, < 0.01)	< 0.01 (< 0.01, < 0.01)	0.06 (0.06, 0.06)	
					Refined sugar	< 0.01 (< 0.01, < 0.01)	< 0.02 (< 0.02, < 0.02)	< 0.01 (< 0.0 1, < 0.01)	< 0.01 (< 0.01, < 0.01)	< 0.01 (< 0.01 , < 0.01)	

Residues of M700F002, M700F008, and M700F048 were not detected in the untreated control samples, while residues of fluxapyroxad were < LOQ

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

Commodity	Processing factor					
	Parent only	Total residues				
Molasses	0.17	0.17				
Raw sugar	0.25	0.25				
Refined sugar	< 0.04	< 0.04				

Table 5	54	Processing	factors	in	sugar	cane	commodities
I GOIC .		1 TOCCODDING	incloid	***	Jugui	ouno	commoartic

Cotton

A processing study in <u>cotton</u> was conducted in the USA (Woodard and Brungardt, 2014). Field trials were conducted at two sites. Three foliar broadcast applications of an SC formulation (333 g/L pyraclostrobin and 167 g/L fluxapyroxad) were made at a target rate of 3 L/ha and a target interval of 7 days. A spray adjuvant (non-ionic surfactant) was included in the tank mix for all applications. Cottonseed was harvested 30 days after the last application. Sample of treated and control raw cottonseed from each site were ginned within 1 day of harvest, frozen, and transported to the laboratory. Bulk treated and control seed samples were collected and transported to the processor, either frozen (Hinton site) or at ambient temperature (Sanger site). At the processing site, all samples were stored frozen pending processing, which took place around 4–6 weeks after harvest.

Cottonseed samples (approximately 70 kg per sample) were processed using batch methods simulating commercial processes as far as possible. Control samples were processed prior to treated samples to minimise contamination. Defrosted seed samples were tested for moisture, and dried if necessary to reduce the moisture content below 8%. The seed was passed through a stick/burr extractor to remove gin trash, then ginned to separate the cotton seed and lint. Undelinted cottonseed was sampled at this point. Further delinting was then carried out in a delinter to reduce the remaining lint from 11-15% to 3%. Using a roller mill, the delinted seed was cracked, and the kernel and hulls separated using a screen cleaner. Hulls were sampled at this point.

The moisture content of the kernel was checked, and water added to give a moisture level of $\geq 13.5\%$ if necessary. After moisture equilibration, the kernels were heated to approximately 80–90 °C for approximately 30 minutes, then flaked and fed through an extruder with steam injection to produce collets. The collets were ground, dried in an oven at approximately 65–80 °C for 35–40 minutes, then extracted three times with hexane in stainless steel reactors at approximately 50–60 °C. The residual solvent allowed to evaporate from the meal, and the moisture content of the meal adjusted to $\geq 13.5\%$ if necessary. The meal was then screened, and toasted at approximately 105–115 °C for 45–60 minutes, then cooled and sampled. A vacuum evaporator operating at approximately 90–95 °C was used to separate the crude oil from the extraction solvent.

The free fatty acid content of the crude oil was determined, and the required amount of sodium hydroxide solution was added for refining. Refining was carried out by heating with a water bath at approximately 20-25 °C with high rpm stirring for approximately 15 minutes, followed by approximately 12 minutes at low rpm and approximately 65 °C. The refined oil and soapstock were separated by centrifuge and the soapstock was discarded. The refined oil was filtered and bleached by heating at 40-50 °C with diatomaceous earth under vacuum. The temperature was increased to 85-100 °C for 10-15 minutes, then the oil was cooled and filtered. The bleached oil was deodorised by heating to 220-230 °C under vacuum for approximately 30 minutes, and adding 1 mL 0.5% citric acid solution per 100 mL oil. The deodorised oil was sampled.

All processed samples were frozen immediately after collection.

Residues of fluxapyroxad and its metabolites were determined using LC-MS/MS method number L0137/01. All analyses of cottonseed and processed commodities were completed within

3 months of collection of the seed samples and within approximately 1 month of completion of processing.

Location, Year (variety)	Applicatio	ns				Residues, mg	g/kg, parent ec	luivalents	
	No. (RTI,	Rate, g ai/ha	Spray volume	DAL A	Sample	Fluxapyrox ad	M700 F008	M700 F048	Total*
	days)	8	(L/ha)						
Hinton, OK, USA, 2013 (FM9160 B2)	3 (6, 7)	510, 510, 510	190, 190, 200	30	Undelinted seed	0.14	<0.01	<0.01	0.14
					Undelinted seed pre- processing	0.64 (0.54, 0.74)	<0.01 (<0.01, <0.01)	<0.01 (<0.01, <0.01)	0.64 (0.54, 0.74)
					Meal	0.025	< 0.01	< 0.01	0.025
					Hulls	0.11	< 0.01	< 0.01	0.11
					Refined oil	0.015	< 0.01	< 0.01	0.015
Sanger, CA, USA, 2013 (FM835LLB2)	3 (7, 6)	500, 500, 500	190, 190, 190	29	Undelinted seed	0.16 (0.093, 0.21, 0.16, 0.16) [#]	<0.01 (<0.01, <0.01, <0.01)	<0.01 (<0.01, <0.01, <0.01)	0.16 (0.093, 0.21, 0.16, 0.16)
					Undelinted seed pre- processing	0.14	<0.01	< 0.01	0.14
					Meal	< 0.01	< 0.01	< 0.01	< 0.01
					Hulls	0.028	< 0.01	< 0.01	0.028
					Refined oil	< 0.01	< 0.01	< 0.01	< 0.01

Table 55 Residues	of fluxapyroxad	and metabolites in	n cottonseed and	processed fractions
Table 33 Residues		and metabolities n	I conoliseeu allu	processed fractions

Apart from one of the oil samples, where residues of parent < LOQ were detected, residues were generally not detected in the untreated control samples

^a Sum of fluxapyroxad, M700F008, and M700F048 (the dietary risk assessment residue definition), expressed as fluxapyroxad equivalents

^bControl and treated samples of undelinted seed obtained directly from the Sanger trial site appear to have been inadvertently swapped, given that the sample labelled as treated did not contain detectable residues of fluxapyroxad, while the sample labelled as the control contained finite fluxapyroxad residues at a level similar to that observed in the unprocessed seed subsampled from the bulk treated sample for processing from the Sanger site. As a result, the finite residue sample will be regarded as the treated sample.

Table 56 Processing factors for fluxapyroxad in cottonseed

Commodity	Processing factor					
	Parent only	Total residues				
Meal	0.04, < 0.07 (median = 0.055)	0.04, < 0.07 (median = 0.055)				
Hulls	$0.17, 0.2 \pmod{0.185}$	$0.17, 0.2 \pmod{1000} = 0.185$				
Refined oil	0.02, < 0.07 (median = 0.045)	0.02, < 0.07 (median = 0.045)				

Residues in animal commodities

No new animal feeding studies were supplied to the Meeting.

APPRAISAL

Fluxapyroxad was first evaluated for residues and toxicological aspects by the 2012 JMPR. The 2012 Meeting established an ADI of 0–0.02 mg/kg bw and an ARfD of 0.3 mg/kg bw for fluxapyroxad. The 2012 Meeting recommended a number of maximum residue levels for fluxapyroxad.

The residue definition was established as *fluxapyroxad* for compliance with MRLs for both plant and animal commodities. For estimation of dietary intake, the residue definition was established as *sum of fluxapyroxad*, 3-(*difluoromethyl*)-N-(3',4',5'-*trifluoro*-1,1'-*biphenyl*-2-*yl*)-1H-pyrazole-4-carboxamide (M700F008), and 3-(*difluoromethyl*)-1-(β -D-glucopyranosyl)-N-(3',4',5'-*trifluoro*-1,1'-*biphenyl*-2-*yl*)-1H-pyrazole-4-carboxamide (M700F048), expressed as *fluxapyroxad* for plant commodities and *sum of fluxapyroxad and* 3-(*difluoromethyl*)-N-(3',4',5'-*trifluoro*-1,1'-*biphenyl*-2-*yl*)-1H-pyrazole-4-carboxamide (M700F008), expressed as *fluxapyroxad* for plant commodities and *sum of fluxapyroxad and* 3-(*difluoromethyl*)-N-(3',4',5'-*trifluoro*-1,1'-*biphenyl*-2-*yl*)-1H-pyrazole-4-carboxamide (M700F008), expressed as *fluxapyroxad* for animal commodities.

Fluxapyroxad was scheduled by the Forty-sixth Session of the CCPR in 2014 for evaluation of residue data for additional crops by the 2015 JMPR.

Methods of analysis

No new methods of analysis were submitted to the Meeting.

Stability of residues in stored analytical samples

No new storage stability studies were submitted to the Meeting.

Results of supervised residue trials on crops

The Meeting received supervised trial data for foliar application of fluxapyroxad to citrus fruit, cherries, grapes, strawberries, blueberries, raspberries, bananas, papaya, mango, bulb vegetables, Brassica vegetables, cucurbits, leafy vegetables, carrots, radish, celery, rice, tree nuts, sugarcane and cotton, as well as data for seed treatment and in-furrow application to potatoes.

It is noted that a number of crops (bulb vegetables, Brassica vegetables, cucurbits, leafy vegetables, celery, rice, sorghum and cotton) for which the critical GAP considered is a foliar application use pattern in the USA also have seed treatment uses registered, and the same crops could be treated with both a seed treatment and foliar application of fluxapyroxad.

All residue data provided was for the foliar use pattern (no seed treatment data was available). The foliar use patterns involve application much closer to harvest, with multiple applications and much shorter pre-harvest intervals. The Meeting noted that residue data for seed treatment of cotton at rates up to 100 g ai/100 kg seed considered by the 2012 Meeting showed no detectable residues of fluxapyroxad in cottonseed or gin by-products at harvest. Seed treatment uses are therefore not expected to contribute significantly to the residues of fluxapyroxad in harvested commodities. The Meeting therefore considered that maximum residue levels recommended based on the foliar use patterns are sufficient to cover residues arising from seed treatment use alone, or combined seed treatment/foliar use.

For dietary intake assessment, the residues are expressed as the sum of fluxapyroxad, M700F008, and M700F048, expressed as fluxapyroxad (total residues). Residues of the metabolites are reported as parent equivalents.

The method LOQ was 0.01 mg/kg for each analyte as measured, or 0.01, 0.02, 0.01 and 0.01 mg/kg as parent equivalents for parent, M700F002, M700F008, and M700F048 respectively. The treatment of residues < LOQ for the purpose of summing residue components is illustrated in the table below.

Residues, mg/kg parent ec	uivalents		Total (sum of fluxapyroxad, M700F008, and
Fluxapyroxad	M700F008	M700F048	M700F048)
0.10	< 0.01	< 0.01	0.10

< 0.01	< 0.01	< 0.01	< 0.01
< 0.01	0.03	< 0.01	0.03

Citrus fruits

The maximum GAP for the <u>citrus fruit</u> group is in Argentina, with 3×0.0033 kg ai/hL applications, with a maximum spray volume of 5000 L/ha, giving a per hectare rate of 0.165 kg ai/ha, and a pre-harvest interval of 7 days. No trials matching that GAP were available.

The GAP in Brazil is 3×0.0025 kg ai/hL applications at 7-day intervals, with a spray volume of 2000 L/ha (0.05 kg ai/ha), with a 14-day PHI.

Residue trials in <u>oranges</u>, <u>lemons</u> and <u>limes</u> in accordance with the Brazilian GAP were undertaken in Brazil and Argentina.

Residues of fluxapyroxad (parent only) in <u>oranges</u> (whole fruit) at a 14-day PHI were 0.03, 0.04, 0.05 (2), 0.06 (2), 0.07, 0.14 (2), 0.16, and 0.17 mg/kg.

Total residues in whole oranges were 0.03, 0.04, 0.05 (2), 0.06 (2), 0.07, 0.14 (2), 0.16, and 0.17 mg/kg.

Residue data in peel and pulp were available for some of the trials.

Total residues of flux apyroxad in pulp (edible portion) in oranges (4 trials) and lemons (2 trials) were < 0.01 (6) mg/kg.

The Meeting concluded that there was sufficient edible portion data on which to estimate the STMR and HR for oranges.

The Meeting estimated a maximum residue level of 0.3 mg/kg for fluxapyroxad in oranges, sweet, sour, together with an STMR and an HR of 0.01 mg/kg (based on the edible portion data).

Residues of fluxapyroxad (parent only and total residues) in whole lemons at a 14-day PHI were 0.09 and 0.13 mg/kg.

Residues of fluxapyroxad (parent only and total residues) in limes at a 14-day PHI were 0.04 and 0.06 mg/kg.

The Meeting concluded that there were insufficient data available to estimate maximum residue levels for fruits other than oranges in the citrus fruit group.

Stone fruits

The critical GAP for the stone fruit group is in the USA, with 3×0.123 kg ai/ha applications at 7-day intervals, and a 0-day pre-harvest interval.

Residue data in peaches, plums and cherries was considered by the 2012 Meeting in conjunction with the above GAP, and a group maximum residue level of 2 mg/kg was estimated for stone fruit.

A request was received by the present Meeting to reconsider the MRL for cherries, with a view to establishing a higher limit to facilitate trade, noting that the highest residue for stone fruit (in cherries) was 1.9 mg/kg. No new data for stone fruit were provided to the current Meeting: two cherry trials were submitted; however, these were considered by the 2012 Meeting. The 2012-submitted stone fruit data are reconsidered in accordance with the 2013 and 2014 JMPR general considerations relating to group MRLs.

Residues of fluxapyroxad (parent compound) in <u>cherries</u> from supervised trials in accordance with GAP were 0.26, 0.31, 0.55, 0.56, 0.59, 0.82, 1.1, and 1.9 mg/kg.

Total residues in cherries were 0.37, 0.50, 0.72, <u>0.73</u>, <u>0.78</u>, 1.1, 1.4, and 2.3 mg/kg.

Residues of fluxapyroxad (parent compound) in <u>peaches</u> from supervised trials in accordance with GAP were 0.28, 0.30, 0.32, 0.33, 0.34, 0.43, 0.45, 0.55, 0.57, 0.58, 0.59, and 0.63 mg/kg.

Total residues in peaches were 0.30, 0.31, 0.33, 0.34, 0.35, <u>0.45</u>, <u>0.48</u>, 0.58, 0.62, 0.63, and 0.66 (2) mg/kg.

Residues of fluxapyroxad (parent compound) in <u>plums</u> from supervised trials in accordance with GAP were 0.23, 0.24, 0.27, 0.37, 0.38, 0.49, 0.55, 0.56, 0.64, and 0.95 mg/kg.

Total residues in plums were 0.23, 0.24, 0.27, 0.38, <u>0.39</u>, <u>0.49</u>, 0.55, 0.56, 0.64, and 0.95 mg/kg.

The Meeting noted the use in the USA is for the stone fruit crop group. Although the median residues for each fruit differed by less than a factor of five, the Meeting decided to recommend maximum residue levels for the individual sub-groups of stone fruit as there are sufficient trials available for each sub-group. The Meeting estimated a maximum residue level for cherries of 3 mg/kg, together with an STMR and an HR of 0.755 and 2.3 mg/kg respectively. The Meeting estimated a maximum residue level of 1.5 mg/kg for the sub-group peaches, together with an STMR and HR of 0.465 and 0.66 mg/kg respectively. The Meeting estimated a maximum residue level of 1.5 mg/kg for the sub-group peaches, together with an STMR and HR of 0.465 and 0.66 mg/kg respectively. The Meeting estimated a maximum residue level of 1.5 mg/kg for the sub-group plums, together with an STMR and an HR of 0.44 and 0.95 mg/kg. The Meeting withdrew its previous recommendation of 2 mg/kg for stone fruit.

Berries and other small fruits (except grapes)

The critical GAP for bushberries, caneberries, low growing berries, and strawberries is in the USA, with 3×0.2 kg ai/ha applications at 7-day intervals, and a 0-day pre-harvest interval.

A series of trials in <u>blueberries</u> (highbush type) was conducted in the USA. Residues of fluxapyroxad (parent only) immediately after the last of 3×0.2 kg ai/ha applications were 1.3, 1.7, 2.4 (2), and 3.8 mg/kg.

Total residues were: 1.3, 1.7, <u>2.4</u> (2), and 3.8 mg/kg.

A trial in <u>blackberries</u> was conducted in the USA. Residues of fluxapyroxad (parent only and total residues) immediately after the last of 3×0.2 kg ai/ha applications were 1.4 mg/kg.

A trial in <u>raspberries</u> was conducted in the USA. Residues of fluxapyroxad (parent only and total residues) immediately after the last of 3×0.2 kg ai/ha applications were: 2.0 mg/kg.

In a series of trials in <u>strawberries</u> conducted in the USA, residues of fluxapyroxad (parent only) immediately after the last of 3×0.2 kg ai/ha applications were: 0.21, 0.26, 0.76 (2), 0.87, 0.97, 1.0, and 2.3 mg/kg.

Total residues were: 0.22, 0.26, <u>0.76</u> (2), <u>0.87</u>, 0.97, 1.0, and 2.4 mg/kg.

The Meeting noted that the GAPs for the subgroups bushberries, caneberries and low growing berries, and strawberries are the same, and noted that the medians for blueberries and strawberries differed by less than $5 \times (2.9 \times)$ and agreed to consider a group MRL. In determining which datasets to use for estimating the MRL, the Meeting noted that the datasets for blueberries and strawberries were not statistically similar (Mann-Whitney), and, based on the blueberries data set, estimated a maximum residue level of 7 mg/kg for berries and other small fruits (except grapes), together with an STMR and an HR of 2.4 and 3.9 mg/kg (based on the highest residue of duplicate samples) respectively.

Grapes

The critical GAP for grapes is in the USA, with 3×0.2 kg ai/ha applications at 10-day intervals, and a 14-day pre-harvest interval.

A series of trials was conducted in the USA. Residues of fluxapyroxad (parent only) at a 14-day PHI after 3×0.2 kg ai/ha applications were 0.11, 0.13, 0.23, 0.43, 0.51, 0.62, 0.71, and 1.4 mg/kg.

Total residues were: 0.11, 0.13, 0.23, <u>0.43</u>, <u>0.51</u>, 0.62, 0.71, and 1.4 mg/kg.

The Meeting estimated a maximum residue level of 3 mg/kg for fluxapyroxad in grapes, together with an STMR and an HR of 0.47 and 1.4 mg/kg respectively.

Tropical fruit—inedible peel

Banana

The critical GAP in <u>bananas</u> is 4×0.15 kg ai/ha applications at 8-day intervals, with a 0-day preharvest interval, in Belize, Costa Rica, Dominican Republic, El Salvador, Guatemala, Honduras and Panama. Trials matching GAP and conducted in Brazil, Colombia, and Ecuador were available. Results were reported for both bagged and unbagged fruit for each trial plot; the results for unbagged bananas were considered for estimation of the maximum residue level and dietary risk assessment.

Residues of fluxapyroxad (parent compound) in unbagged bananas (whole fruit) after treatment in accordance with GAP were 0.06, 0.07, 0.08, 0.10, 0.14, 0.15, 0.16, 0.36, 0.66, 0.77, and 1.6 mg/kg.

Total residues of flux apyroxad in banana pulp (edible portion) were 0.03 (2), $\underline{0.05}$, $\underline{0.06}$, 0.09, and 0.10 mg/kg.

The Meeting estimated a maximum residue level of 3 mg/kg for bananas, based on the whole fruit data, and an STMR and an HR of 0.055 and 0.10 mg/kg, based on the edible portion data.

Mango

The critical GAP for <u>mango</u> is in Brazil, with 4×0.0067 kg ai/hL applications at 7-day intervals, a spray volume of up to 1000 L/ha (giving a maximum per-hectare rate of 0.067 kg ai/ha), and a pre-harvest interval of 7 days.

In trials conducted at GAP in Brazil, residues of fluxapyroxad (parent compound) at a 7-day PHI were 0.14, 0.16, 0.21, and 0.39 mg/kg. Total residues were 0.14, 0.16, 0.21, and 0.39 mg/kg.

The Meeting concluded that there was insufficient data to estimate a maximum residue level for mango.

Papaya

The critical GAP for papaya is in Mexico, with 2×0.1 kg ai/ha applications at 14-day intervals, and a 7-day pre-harvest interval.

The Meeting concluded that the residue data did not match the GAP (maximum two sprays GAP versus four sprays in the trials).

Bulb vegetables

The critical GAP for the bulb vegetables group is in the USA (3×0.2 kg ai/ha applications at 7-day intervals and a 7-day pre-harvest interval).

Residue trials were conducted in bulb onions (dry) and green onions.

Residues of flux apyroxad (parent only) at a 7-day PHI in bulb onions were 0.03, 0.16, 0.23 (2), and 0.27 mg/kg.

Total fluxapyroxad residues were 0.03, 0.16, <u>0.23</u> (2), and 0.27 mg/kg.

The Meeting estimated a maximum residue level of 0.6 mg/kg for bulb onions, together with an STMR and an HR of 0.23 and 0.28 mg/kg respectively.

The Meeting agreed to extrapolate the maximum residue level, STMR and HR values estimated for bulb onions to garlic and shallot.

Residues of flux apyroxad (parent only) at a 7-day PHI in green onions were 0.24 and 0.56 mg/kg.

Total fluxapyroxad residues were 0.24 and 0.56 mg/kg.

The Meeting concluded that there were insufficient data to estimate maximum residue levels for other crops in the bulb vegetables group.

Brassica vegetables

The critical GAP for Brassica vegetables is in the USA (3×0.1 kg ai/ha applications, a re-treatment interval of 7 days, and a pre-harvest interval of 3 days).

Residue data in <u>cabbage</u> and <u>broccoli</u> from trials conducted in the USA in accordance with GAP were available to the Meeting.

Fluxapyroxad was accidentally applied at double the label application rate for one of the broccoli trials. The Meeting noted that the application rate was within the acceptable range of $0.3-4 \times$ GAP and that other parameters were in accordance with GAP. The Meeting agreed that this result could be scaled to GAP using proportionality.

Residues of fluxapyroxad (parent only) in broccoli (unscaled results) at a 3-day PHI were 0.17, 0.32, 0.35, 0.57, and 1.2 mg/kg. Total residues were 0.17, 0.34, 0.36, 0.61, and 1.5 mg/kg.

Residues of fluxapyroxad (parent only) in broccoli at a 3-day PHI were 0.17, 0.29 (s), 0.32, 0.35, and 1.2 mg/kg, where (s) indicates a result that was scaled to the proposed GAP.

Total residues in broccoli were 0.17, 0.31 (s), 0.34, 0.36, and 1.5 mg/kg.

Residues of fluxapyroxad (parent only) in cabbage (heads with wrapper leaves) at a 3-day PHI were 0.07, 0.11, 0.13, 0.14, 0.22, and 1.2 mg/kg.

Total residues in cabbage (head with wrapper leaves) were 0.07, 0.11, 0.14 (2), 0.22, and 1.3 mg/kg.

Total residues in cabbage heads (without wrapper leaves) were < 0.01, 0.01, $\underline{0.04}$ (2), 0.05, and 0.07 mg/kg.

The Meeting noted that the GAP was for the Brassica vegetables group and considered a group MRL. The Meeting further noted the similarity of the datasets (median for broccoli was $2.6\times$ the median for cabbage, and agreed to consider a group MRL. In determining which datasets to use for estimating the MRL, the datasets were confirmed to be similar by the Mann-Whitney U test) and it was agreed to combine the datasets for the purpose of estimating a group maximum residue level.

Combined dataset for fluxapyroxad (parent only) in broccoli and cabbage (with wrapper leaves): 0.07, 0.11, 0.13, 0.14, 0.17, 0.22, 0.32, 0.35, 0.57, and 1.2 (2) mg/kg.

Combined dataset for total residues in broccoli and cabbage (with wrapper leaves): 0.07, 0.11, 0.14 (2), 0.17, $\underline{0.22}$, 0.31, 0.34, 0.36, 1.3, and 1.5 mg/kg.

The Meeting estimated a maximum residue level for Brassica vegetables of 2 mg/kg. Based on the data for total residues in cabbages with wrapper leaves removed, the Meeting estimated an STMR and an HR of 0.04 and 0.07 mg/kg respectively for cabbage. Based on the combined total residues data set, the Meeting estimated an STMR and an HR of 0.22 and 1.7 mg/kg respectively.

Fruiting vegetables, Cucurbits

The critical GAP for cucurbit fruiting vegetables is in the USA (3×0.1 kg ai/ha, with a 7-day retreatment interval and a 0-day pre-harvest interval). Residue trials in excess of GAP (3×0.2 kg ai/ha applications) were conducted in the USA in <u>cucumber</u>, <u>melon (cantaloupe)</u>, and <u>summer squash</u>. Trials in melons, including watermelons were also conducted in Brazil, but these did not match the critical GAP (four applications rather than three, and the rate differed by more than $\pm 30\%$).

Residue data for the crops at the appropriate PHI are summarized below.

Residues of flux apyroxad (parent only and total residues) in cucumber: 0.03, 0.17 (2), and 0.24 mg/kg.

Residues of fluxapyroxad (parent only and total residues) in whole melons (other than watermelons): 0.05 (2), 0.08, 0.21, and 0.24 mg/kg.

Residues of flux apyroxad (parent only and total residues) in summer squash: 0.05, 0.07, 0.10, 0.11, and 0.14 mg/kg.

Data for the three crops when scaled to the US GAP (divide by 2) are summarized below:

Residues of flux apyroxad (parent only and total residues) in cucumber: 0.015, 0.085 (2), and $0.12~{\rm mg/kg}.$

Residues of fluxapyroxad (parent only and total residues) in melons (other than watermelons): 0.025 (2), 0.04, 0.105, and 0.12 mg/kg.

Residues of flux apyroxad (parent only and total residues) in summer squash: 0.025, 0.035, 0.055, and 0.07 mg/kg.

The Meeting noted that the GAP is for the cucurbit fruiting vegetables group and further noted that the datasets are similar (maximum difference in the median was $2.1\times$). In determining which datasets to use for estimating the MRL, the similarity of the datasets was confirmed by the Kruskal-Wallis test. The Meeting decided to combine the scaled datasets for the purpose of estimating a group maximum residue level.

The combined dataset for residues of fluxapyroxad (parent only) in cucumber, melon and summer squash is 0.015, 0.025 (3), 0.035, 0.04, 0.05, 0.055, 0.07, 0.085 (2), 0.105, and 0.12 (2) mg/kg.

The combined dataset for total residues in cucurbits (whole fruit) is 0.015, 0.025 (3), 0.035, 0.04, 0.05, 0.055, 0.07, 0.085 (2), 0.105, and 0.12 (2) mg/kg.

The Meeting estimated a maximum residue level of 0.2 mg/kg for fruiting vegetables, cucurbits, together with an STMR and an HR of 0.0525 and 0.13 mg/kg respectively.

Leafy vegetables

Brassica leafy vegetables

The critical GAP for <u>Brassica leafy vegetables</u> is in the USA (3×0.1 kg ai/ha applications, a 7-day retreatment interval, and a 3-day pre-harvest interval).

Residue trials in mustard greens were conducted in the USA in accordance with GAP.

Residues of flux apyroxad (parent only) at a 3-day PHI were 0.48, 0.57, 0.90, 1.7, and 1.9 mg/kg.

Total residues were 0.93, 1.3, <u>1.7</u>, 2.7, and 3.1 mg/kg.

The Meeting agreed to extrapolate the residue data for mustard greens to the Brassica leafy vegetables subgroup. The Meeting estimated a maximum residue level of 4 mg/kg for brassica leafy vegetables, together with an STMR and an HR of 1.7 and 3.1 mg/kg respectively.

Leafy vegetables (except Brassica leafy vegetables)

The critical GAP for <u>leafy vegetables</u> other than <u>Brassica leafy vegetables</u> is in the USA (3×0.2 kg ai/ha applications with a retreatment interval of 7 days, and a 1-day pre-harvest interval).

Residue trials in <u>head lettuce</u>, <u>leaf lettuce</u>, and <u>spinach</u> were conducted in the USA in accordance with the cGAP for leafy vegetables (except Brassica leafy vegetables).

Residues of fluxapyroxad (parent only and total residues) at a 1-day PHI in head lettuce were 0.14, 0.47, 0.51, 0.66, and 1.9 mg/kg.

Residues of flux apyroxad (parent only) in leaf lettuce at a 1-day PHI were 2.7 and 4.4 mg/kg.

Total residues in leaf lettuce were 2.7 and 4.4 mg/kg.

Two of the residue trials reported as leafy lettuce were for cos lettuce varieties.

Residues of flux apyroxad (parent only) in cos lettuce at a 1-day PHI were 3.3 and $6.2\ \mathrm{mg/kg}.$

Total residues in cos lettuce were 3.4 and 6.2 mg/kg.

Residues of flux apyroxad (parent only) in spinach at a 1-day PHI were 5.2, 6.0, 6.7, 8.3, and 11.5 mg/kg.

Total residues in spinach were 5.2, 6.3, <u>6.8</u>, 8.8, and 12.2 mg/kg.

The Meeting estimated a maximum residue level of 4 mg/kg for head lettuce, together with an STMR and an HR of 0.51 and 2.0 mg/kg respectively.

The Meeting noted that there were insufficient leafy and cos lettuce data for estimation of maximum residue levels.

The Meeting estimated a maximum residue level of 30 mg/kg for spinach, together with an STMR and an HR of 6.8 and 13 mg/kg respectively.

Residue data for <u>radish tops</u> were also available from trials conducted on radish in the USA, in accordance with the GAP for root vegetables $(3 \times 0.1 \text{ kg ai/ha}, \text{ with a 7-day PHI})$.

Residues of flux apyroxad (parent only) in radish tops at a 7-day PHI were 0.2 (2), 0.7, 1, and 4 mg/kg.

Total residues in radish tops were 0.4, 0.6, $\underline{1.2}$, 1.7, and 5 mg/kg.

The Meeting estimated a maximum residue level of 8 mg/kg for radish leaves, together with an STMR and HR of 1.2 and 6 mg/kg (based on the highest residue of duplicate samples) respectively.

Short term intake assessment showed that residues in spinach exceed the acute reference dose of 0.3 mg/kg bw, at 180% of the ARfD, for children.

Root and tuber vegetables

The 2012 Meeting considered residue data for potato and sugar beet, in accordance with GAP in the USA (3×0.1 kg ai/ha foliar applications with 7-day retreatment interval and a 7-day PHI, and maximum residue levels of 0.03 and 0.15 mg/kg were estimated for potato and sugar beet respectively.

The current Meeting received residue data for potato (soil application at planting), carrots and radish (both for foliar applications).

Carrot

The critical GAP for <u>carrots</u> (for the group root and tuber vegetables except sugar beet) is in the USA, at 3×0.1 kg ai/ha foliar applications, with a 7-day retreatment interval and a 7-day pre-harvest interval.

Trials were conducted in the USA in accordance with GAP.

Residues of fluxapyroxad (parent only and total residues) in carrots at a 7-day PHI were 0.04, 0.05, <u>0.06</u>, 0.1, and 0.5 mg/kg.

Potato

A series of residue trials was conducted in northern and southern Europe involving a single, at planting, in-furrow application at 0.24 kg ai/ha. However, there are currently no registrations for that GAP. The Meeting therefore was unable to estimate a maximum residue level for potatoes based on at planting soil application.

The 2012 Meeting considered residue data for foliar application to potatoes from trials conducted in accordance with the US GAP for root and tuber vegetables (except sugar beet) group (3×0.1 kg ai/ha foliar applications, with a 7-day pre-harvest interval).

Residues of flux apyroxad (parent only and total residues) in potatoes at a 7-day PHI were <0.01 (17), and 0.02 (2) mg/kg.

Radish

The critical GAP for radish (for the group root and tuber vegetables except sugar beet) is in the USA, at 3×0.1 kg ai/ha foliar applications, with a 7-day retreatment interval and a 7-day pre-harvest interval.

Trials were conducted in the USA in accordance with GAP.

Residues of fluxapyroxad (parent only and total) in radish roots at a 7-day PHI were 0.03, 0.04, 0.05, and 0.1 (2) mg/kg.

Sugar beet

The critical GAP for sugar beet is in the USA, at 3×0.1 kg ai/ha foliar applications, with a 7-day retreatment interval and a 7-day pre-harvest interval. Residue data for this GAP was considered by the 2012 Meeting.

Residues of fluxapyroxad (parent only and total residues) in sugar beet roots at a 7-day PHI were 0.01 (2), 0.03 (3), 0.04 (3), 0.05 (2), and 0.06 (2) mg/kg.

The Meeting noted that the critical GAPs for root and tuber vegetables (except sugar beet) and sugar beet were the same, and considered a group maximum residue level.

The Meeting noted that the median residue for potatoes differed from those carrot and radish by > 5-fold ($> 6 \times$ and $> 5 \times$ respectively) and concluded that a group maximum residue level was not appropriate. The Meeting confirmed the 2012 recommendation for a maximum residue level, STMR and HR of 0.03, 0.01 and 0.02 mg/kg respectively for fluxapyroxad in potatoes. The Meeting confirmed the 2012 recommendation for a maximum residue level, STMR and 0.06 mg/kg respectively for fluxapyroxad in sugar beet.

The Meeting estimated a maximum residue level of 1 mg/kg for fluxapyroxad in carrot, together with an STMR and an HR of 0.06 and 0.5 mg/kg respectively. The Meeting agreed to extrapolate these values to parsnips.

The Meeting estimated a maximum residue level of 0.2 mg/kg for fluxapyroxad in radish, together with an STMR and an HR of 0.05 and 0.1 mg/kg respectively.

Celery

The critical GAP for <u>celery</u> is in the USA, at 3×0.2 kg ai/ha applications, with a 7-day retreatment interval, and a 1-day pre-harvest interval.

Residues of fluxapyroxad (parent only and total residues) in US trials matching GAP were 1.3, 1.4, 1.8, and 5.2 mg/kg.

The Meeting estimated a maximum residue level of 10 mg/kg for celery, together with an STMR and an HR of 1.6 and 5.5 mg/kg respectively.

Cereals

Rice

The critical GAP for <u>rice</u> is in the USA, with 2×0.15 kg ai/ha applications, a 7-day retreatment interval, and a 28-day pre-harvest interval. Residue trials matching the GAP were conducted in the USA.

Residues of fluxapyroxad (parent only) in paddy rice (with husks) at a 28-day PHI were 0.26, 0.34, 0.37, 0.59, 0.60, 0.61, 0.80, 0.92 (2), 0.94, 1.1, 1.2 (2), 1.7, and 3.7 mg/kg.

Total residues were 0.35, 0.37, 0.49, 0.59, 0.61, 0.62, 0.83, <u>0.94</u>, 0.95, 0.96, 1.1, 1.2 (2), 1.7, and 3.7 mg/kg.

The Meeting estimated a maximum residue level of 5 mg/kg for rice, together with an STMR of 0.94 mg/kg.

Sorghum

Residue data for <u>sorghum</u> were provided to the 2012 Meeting, however at the time no maximum residue level was estimated as the data did not match any label GAP. GAPs have now been provided to the Meeting for consideration against the previously submitted data.

The GAP for sorghum in Mexico is 2×0.1 kg ai/ha applications 14 days apart, with a 10-day pre-harvest interval. No data matching that GAP is available to the Meeting.

The GAP for sorghum in the USA is 2×0.1 kg ai/ha applications, with a 21-day preharvest interval. Data from trials conducted in the USA and submitted to the 2012 Meeting match the US GAP for sorghum.

Residues of flux apyroxad (parent only) in sorghum at a 21-day PHI were 0.13, 0.15 (2), 0.17, 0.21, 0.24, 0.31, and 0.40 mg/kg.

Total residues in sorghum were 0.13, 0.15, 0.17, 0.19, <u>0.20</u>, 0.22, 0.30, 0.32, and 0.40 mg/kg.

The Meeting estimated a maximum residue level of 0.7 mg/kg for sorghum, together with an STMR of 0.2 mg/kg.

Sugar cane

The critical GAP for <u>sugarcane</u> is in the USA, with 2×0.125 kg ai/ha applications, a 14-day retreatment interval, and a 14-day pre-harvest interval. Residue trials matching GAP were conducted in the USA.

Residues of flux apyroxad (parent only) in sugarcane at a 14-day PHI were 0.06, 0.26, 0.56, and 1.3 mg/kg.

Total residues were 0.06, 0.26, 0.58, and 1.4 mg/kg.

The Meeting concluded that there was insufficient data to estimate a maximum residue level for sugarcane.

Tree nuts

The critical GAP for flux approxed in <u>tree nuts</u> is in the USA, with 3×0.125 kg ai/ha applications, a 7-day retreatment interval, and a 14-day PHI.

Residue trials conducted in the USA in <u>almonds</u> and <u>pecans</u> and matching the US GAP were available to the Meeting.

Residues of flux apyroxad (parent compound and total residues) in almond kernels at a 14-day PHI were < 0.01 (3), 0.01 and 0.02 mg/kg.

Residues of flux apyroxad (parent compound and total residues) in pecan kernels at a 14day PHI were < 0.01 (4), and 0.03 mg/kg.

The Meeting noted that the US GAP was for the tree nuts group and noted the similarity of the datasets for almonds and pecans (the medians were identical at 0.01 mg/kg). The Meeting decided to combine the datasets for almonds and pecans for the purpose of estimating a group maximum residue level.

Parent compound and total residues in almond and pecan kernels were: < 0.01 (7), 0.01, 0.02, and 0.03 mg/kg.

The Meeting estimated a maximum residue level of 0.04 mg/kg for tree nuts, together with an STMR and an HR of 0.01 and 0.03 mg/kg respectively.

Cotton

The 2012 Meeting considered a USA GAP and residue trials for seed treatment application to <u>cotton</u>, and estimated a maximum residue level of 0.01* mg/kg, together with an STMR of 0.

Residue data for foliar application to cotton was presented to the current Meeting.

The GAP for foliar application of fluxapyroxad to <u>cotton</u> in Brazil is 4×0.058 kg ai/ha applications, with a 12-day retreatment interval and a 14-day pre-harvest interval. No data matching that GAP was available to the Meeting.

The USA GAP for cotton is 3×0.1 kg ai/ha, with a 7-day retreatment interval and a 30-day pre-harvest interval. A series of trials conducted in the USA in accordance with the GAP was available to the Meeting.

Residues of parent compound in cottonseed after treatment in accordance with GAP were < 0.01, 0.01 (2), 0.03, 0.07, 0.09, 0.11 (2), and 0.13 mg/kg.

Total residues in cottonseed were < 0.01, 0.01 (2), 0.03, <u>0.07</u>, 0.09, 0.11, 0.12, and 0.13 mg/kg.

The Meeting estimated a maximum residue level of 0.3 mg/kg for cottonseed, together with an STMR of 0.07 mg/kg. The Meeting withdrew the previous maximum residue level recommendation of 0.01* mg/kg for fluxapyroxad in cottonseed.

Animal feeds

Rice straw

The critical GAP for <u>rice</u> is in the USA, with 2×0.15 kg ai/ha applications, and a 28-day pre-harvest interval.

Residues of fluxapyroxad parent compound in rice straw after treatment in accordance with GAP were 1.5, 1.8, 1.9, 2.5, 2.9, 3.1, 3.6, 4.0, 4.2, 5.2, 6.8, 6.9, 7.3, 10, and 42 mg/kg (dry weight basis).

Total residues were 1.5, 1.9 (2), 2.6, 2.9, 3.2, 3.8, 4.2 (2), 5.4, 7.0 (2), 7.4, 10, and 42 mg/kg (dry weight basis).

The Meeting estimated a maximum residue level of 50 mg/kg for rice straw and fodder, dry, together with a median residue and a highest residue of 4.2 and 48 mg/kg respectively.

Sorghum forage and stover

Residue data for <u>sorghum</u> were provided to the 2012 Meeting, but the Meeting was unable to estimate any maximum residue levels due to the data not corresponding with any label GAP. GAPs have now been provided to the Meeting for consideration against the previously submitted data.

The GAP for sorghum in the USA is 2×0.1 kg ai/ha applications, with a 21-day preharvest interval. Data from trials conducted in the USA and submitted to the 2012 Meeting match the US GAP for sorghum.

Residues of fluxapyroxad (parent only) in <u>sorghum forage</u> at a 7-day PHI were 1.5, 1.8, 2.3, 2.7, 2.9, 3.1, 3.5, 6.4, and 7.0 mg/kg (dry weight basis).

Total residues in sorghum forage were 1.6, 2.0, 2.4, 2.8, 3.1, 3.2, 3.5, 6.8, and 7.1 mg/kg (dry weight basis).

The Meeting estimated a median residue and a highest residue of 3.1 and 7.1 mg/kg (dry weight basis) respectively.

Residues of fluxapyroxad (parent only) in <u>sorghum stover</u> at a 21-day PHI were 0.72, 1.3, 1.6 (2), 2.1, 2.5 (2), 2.8, and 3.2 mg/kg (dry weight basis).

Total residues in sorghum stover were 0.72, 1.4,1.8 (2), 2.2, 2.6 (2), 2.9, and 3.3 mg/kg (dry weight basis).

The Meeting estimated a maximum residue level of 7 mg/kg, together with a median residue and a highest residue of 2.2 and 3.3 mg/kg respectively, for sorghum straw and fodder, dry (dry weight basis).

Almond hulls

The critical GAP for fluxapyroxad in <u>tree nuts</u> is in the USA, with 3×0.125 kg ai/ha applications (maximum two consecutive applications), and a 14-day PHI.

Residues of fluxapyroxad (parent compound and total residues) in <u>almond hulls</u> were 0.88, 0.92, <u>1.1</u>, 1.4 and 1.7 mg/kg.

The Meeting estimated a median residue of 1.1 mg/kg.

Cotton gin trash

The USA GAP for cotton is 3×0.1 kg ai/ha, with a 30-day pre-harvest interval.

Residues in <u>cotton gin trash</u> (parent compound) were 6.9 and 8.0 mg/kg, while total residues were 6.9 and 8.1 mg/kg.

The Meeting concluded that there were insufficient data for estimation of a median residue and highest residue for cotton gin trash.

Processing studies

The Meeting received processing studies for oranges, grapes, sugarcane, and cottonseed. The 2012 Meeting received processing studies for plums, rice and sorghum. Processing factors, HR-P, STMR-P and maximum residue levels are summarized in the table below.

Plums

Based on the processing factor of 2.81 for <u>prunes</u> (which was the same for both parent compound and total residues), the STMR and HR of 0.44 and 0.95 mg/kg for <u>plums</u>, the 2012 Meeting estimated an

STMR-P, HR-P and maximum residue level of 1.2, 2.7 and 5 mg/kg respectively for prunes. The current Meeting confirmed those recommendations.

Grapes

Based on the processing factor of 4.25 for <u>raisins</u> (for parent compound and total residues), the STMR of 0.47 mg/kg for <u>grapes</u>, and the HR of 1.4 mg/kg for grapes, the Meeting estimated an STMR-P, an HR-P and a maximum residue level of 2.0, 6.0, and 15 mg/kg respectively for dried grapes.

Using the parent compound and total residues processing factor of 5.25 for grape pomace (wet), the OECD guideline value of 15% for the dry matter content of wet grape pomace, and the above STMR value for grapes, the Meeting estimated a maximum residue level and STMR-P of 150 and 16.5 mg/kg respectively for grape pomace, dry.

Rice

Based on the processing factor of 0.07 for polished <u>rice</u> (which was the same for parent and total residues), the maximum residue level of 5 mg/kg for rice, and the STMR of 0.94 mg/kg, the Meeting estimated a maximum residue level and an STMR-P of 0.4 and 0.066 mg/kg respectively for rice, polished.

Based on the processing factor of 0.59 (for both parent and total residues) for rice, husked produced using the parboiling process, the maximum residue level and STMR of 5 and 0.94 mg/kg respectively, the Meeting estimated a maximum residue level and an STMR-P of 3 and 0.55 mg/kg respectively for rice, husked.

Sugarcane

Although a processing study was provided, there were insufficient data for <u>sugarcane</u> to estimate STMR and HR values, so values for processed commodities were not estimated.

RAC	Processed commodity	PF (parent)	RAC maximum residue level	Processed commodity maximum residue level	PF (total)	RAC STMR	Processed commodity STMR-P	RAC HR	Processed commodity HR-P
Orange	Dried pulp	0.095	0.3	_	0.095	0.06 (whole fruit)	0.006	0.17 (whole fruit)	0.016
	Oil	27.5		_	27.5		1.7		4.7
	Juice	0.045		_	0.045	0.01 (pulp)	0.00045	0.01 (pulp)	0.00045
Plum	Washed plums	0.77	1.5	-	0.77	0.44	0.34	0.95	0.73
	Puree	0.83		-	0.83		0.37		0.79
	Jam	0.41		_	0.41		0.18		0.39
	Dried prunes	2.81		5	2.81		1.23		2.66
Grape	Stalks	5.95	3	_	5.95	0.47	2.8	1.4	8.3
	Grape crush	0.83		-	0.83		0.39		1.2
	Must	0.23		_	0.23		0.11		0.32
	Wet pomace	5.25		-	5.25		2.5		7.4
	Dry pomace	35		150	35		16.5		105
	Must deposit	0.88		_	0.88		0.41		1.2
	Separated must	0.26		_	0.26		0.12		0.36
	Pasteurised juice	0.345		_	0.345		0.16		0.48

RAC	Processed commodity	PF (parent)	RAC maximum residue level	Processed commodity maximum residue level	PF (total)	RAC STMR	Processed commodity STMR-P	RAC HR	Processed commodity HR-P
	Yeast deposit	2.75		-	2.75		1.3		3.9
	Red wine	0.2		-	0.2		0.094		0.28
	Rosé wine	0.23		-	0.23		0.11		0.32
	Raisins	4.25		15	4.25		2		6
Rice	Rice, polished (white rice)	0.07	5	0.4	0.07	0.94	0.066	-	_
	Hulls	4.3		-	4.3		4.04		-
	Bran	3.79		-	3.78		3.55		-
	Rice, husked (brown rice)	0.59		3	0.59		0.55		_
	Flour	0.08		_	0.08		0.08		-
Sorghum	Aspirated grain fractions	14.5	0.7	-	13.8	0.2	2.76	_	-
	Syrup	0.135		_	0.13		0.026		_
Sugar cane	Molasses	0.17	_	_	0.17	-	_	_	-
	Raw sugar	0.25		_	0.25		—		-
	Refined sugar	0.04		-	0.04		-		-
Cotton seed	Meal	0.055	0.3	_	0.055	0.07	0.004	-	-
	Hulls	0.185		-	0.185		0.013		_
	Refined oil	0.045		-	0.045		0.003		-

Residues in animal commodities

Farm animal dietary burden

Dietary burden calculations incorporating all commodities considered by the current and 2012 Meetings for beef cattle, dairy cattle, broilers and laying poultry are presented in Annex 6. The calculations are made according to the livestock diets of the USA/Canada, the European Union, Australia and Japan as laid out in the OECD table.

	US/CAN		EU		AU		Japan	
	Max.	Mean	Max.	Mean	Max.	Mean	Max.	Mean
Beef cattle	4.73	2.64	22.8	6.81	45.2	12.7	27.3	3.25
Dairy cattle	19.7	4.63	23.3	7.95	40.9	11.9	14.1	2.43
Poultry—broiler	0.985	0.985	1.27	0.898	1.37	1.37	0.35	0.35
Poultry—layer	0.985	0.985	8.53	2.69	1.37	1.37	0.947	0.947

Animal commodity maximum residue levels

The animal commodity maximum residue levels were estimated by the 2012 Meeting based on the following maximum and mean dietary burdens:

Animal (commodities)	Dietary burden (ppm)		
	Maximum	Mean	
Beef cattle (mammalian meat and offal)	40.7 (Australia)	11.4 (Australia)	
Dairy cattle (milk)	39.2 (Australia)	9.37 (Australia)	
Poultry-layers (poultry meat, offal and	7.14 (EU)	2.10 (EU)	
eggs)			

The Meeting noted that the dietary burdens had not changed significantly from those determined by the 2012 Meeting and confirmed its previous recommendations for meat (from mammals other than marine mammals), edible offal (mammalian), milks, poultry meat, poultry, edible offal of, and eggs.

RECOMMENDATIONS

On the basis of the data from supervised trials the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits and for dietary intake assessment.

Definition of the residue (for compliance with the MRL for plant and animal commodities): *Fluxapyroxad*.

Definition of the residue (for estimation of dietary intake for plant commodities): Sum of fluxapyroxad and 3-(difluoromethyl)- N-(3',4',5'-trifluoro[1,1'-biphenyl]-2-yl)-1H-pyrazole-4-carboxamide (M700F008) and 3-(difluoromethyl)- $1-(\beta-D-glucopyranosyl)-N-(3',4',5'-triflurobipheny-2-yl)-1H$ -pyrzaole-4-carboxamide (M700F048) and expressed as parent equivalents.

Definition of the residue (for estimation of dietary intake for animal commodities): Sum of fluxapyroxad and 3-(difluoromethyl)- N-(3',4',5'-trifluoro[1,1'- biphenyl]-2-yl)-1H-pyrazole-4-carboxamide (M700F008) expressed as parent equivalents.

CCN	Commodity	Recomme	ended	STMR or	HR or
		Maximun	n residue level	STMR-P	HR-P
		(mg/kg)		mg/kg	mg/kg
		New	Previous		
FI 0327	Banana	3		0.055 ^a	0.10 ^a
FB 0018	Berries and other small fruits (except grapes)	7		1.3	3.9
VB 0040	Brassica (cole or cabbage) vegetables, Head cabbages, Flowerhead brassicas	2		0.04 (cabbage) 0.22 (others)	0.07 (cabbage) 1.7 (others)
VL 0054	Brassica leafy vegetables	4		1.7	3.1
VR 0577	Carrot	1		0.06	0.5
VS 0624	Celery	10		1.6	5.5
FS 0013	Cherries	3		0.755	2.3
SO 0691	Cotton seed	0.3	0.01*	0.07	
DF 0269	Dried grapes (=Currants, Raisins and Sultanas)	15		2.0	6.0
VC 0045	Fruiting vegetables, Cucurbits	0.2		0.0525	0.13
VA 0381	Garlic	0.6		0.23	0.27
FB 0269	Grapes	3		0.47	1.4
AB 0269	Grape pomace, dry	150		16.5	
VL 0482	Lettuce, head	4		0.51	2.0
VA 0385	Onion (bulb)	0.6		0.23	0.28
FC 0004	Oranges, Sweet, Sour	0.3		0.01 ^a	0.01 ^a
VR 0588	Parsnip	1		0.06	0.5
FS 2001	Peaches (including nectarine and	1.5		0.465	0.66

The residue is fat soluble.

CCN	Commodity	Recommended Maximum residue level (mg/kg)		STMR or	HR or
				STMR-P mg/kg	HR-P
					mg/kg
		New	Previous		
	apricots)				
FS 0014	Plums (including prunes)	1.5		0.44	0.95
VL 0494	Radish leaves (including radish	8		1.2	6
	tops)	0.0	_	0.05	0.1
VR 0494	Radish	0.2	-	0.05	0.1
GC 0649	Rice	5		0.94	
CM 0649	Rice, husked	3		0.55	
CM 1205	Rice, polished	0.4		0.066	
AS 0649	Rice straw and fodder, dry (dry weight)	50		4.2	48
VA 0388	Shallot	0.6		0.23	0.27
GC 0651	Sorghum	0.7		0.2	
AS 0651	Sorghum straw and fodder, dry (dry weight)	7		2.3	3.3
VL 0502	Spinach ^b	30		6.8	13
FS 0012	Stone fruits	W	2		
TN 0085	Tree nuts	0.04		0.01	0.03
OR 0691	Cotton seed oil, edible			0.003	
JF 0269	Grape juice			0.16	0.48
JF 0004	Orange juice			0.00045	0.00045
CM 1206	Rice bran, Unprocessed			3.55	
	Rice flour			0.08	
	Wine			0.11	0.23
AB 0001	Citrus pulp, dry			0.006	0.016
AB 0691	Cotton seed hulls			0.013	
AB 1203	Cotton seed meal			0.004	
	Grape must			0.11	0.32
CM 1207	Rice hulls			4.04	
AF 1053	Sorghum forage (dry)			3.0	6.9

^a edible portion

^b On the basis of information provided to the JMPR, , the Meeting concluded that the short-term intake of residues of fluxapyroxad from consumption of spinach for children may present a public health concern.

DIETARY RISK ASSESSMENT

Long-term intake

The International Estimated Dietary Intakes (IEDIs) of fluxapyroxad were calculated for the 17 GEMS/food cluster diets using STMRs/STMR-Ps estimated by the current Meeting and by the 2012 JMPR. The results are shown in Annex 3 to the 2015 Report.

The calculated IEDIs of fluxapyroxad were 4–20% of the maximum ADI (0.02 mg/kg bw). The Meeting concluded that the long-term intakes of residues of fluxapyroxad, resulting from the uses considered by the current Meeting and by the 2012 JMPR, are unlikely to present a public health concern.

Short-term intake

The 2012 Meeting estimated an ARfD of 0.3 mg/kg bw for fluxapyroxad. The International Estimated Short Term Intakes were calculated for fluxapyroxad using the recommendations for STMRs and HRs

for raw and processed commodities in combination with consumption data for the corresponding food commodities. The results are shown in Annex 4 to the 2015 Report.

The IESTI for spinach represented 190% of the ARfD for children. On the basis of the information provided to the JMPR, the Meeting concluded that the short-term intake of fluxapyroxad from consumption of spinach may present a public health concern. The Meeting noted that no data for alternative GAPs in spinach were presented.

For the other commodities, the IESTI for fluxapyroxad calculated on the base of recommendations made by JMPR represented 0-60% of the ARfD for children, and 0-60% for the general population.

Code	Author	Year	Title, Institution, Report reference
366265	Belcher, TI & Riley, M	2012-а	Magnitude and Decline of Fluxapyroxad Residues Following Applications of BAS 700 04 F to Grapes, Eurofins Agroscience Services Inc., BASF DocID 2012 7000114
366266	Belcher, TI & Riley, M	2012-b	Magnitude of Fluxapyroxad Residues in Grape Processed Fractions Following Applications of BAS 700 04 F to Grapes, Eurofins Agroscience Services Inc., BASF DocID 2012/7000115
407714	Csinos, AL	2012-a	Magnitude of Residues of BAS 700 F in Bulb Vegetables Following Applications of BAS 700 01 F, SGS North America Inc., BASF DocID 2012/7003528
407713	Csinos, AL	2012-b	Magnitude of Residues of BAS 700 F in Cucurbit Vegetables Following Applications of BAS 700 01 F, SGS North America Inc., BASF DocID 2012/7003527
381037	Dantas, C & Cardoso, B	2012	Residue Study of Pyraclostrobin and Fluxapyroxad in Mango (Fruits) After Treatment with BAS 703 02 F Under Field Conditions in Brazil, BASF S.A., BASF DocID 2012/3006601
381027	Dantas, C, Cardoso, B & Schwerz, L	2012	Study of Residue of Pyraclostrobin and Fluxapyroxad in Citrus (Fruits) After Treatment with BAS 703 02 F Under Field Conditions in Brazil, BASF S.A., BASF DocID 2012/3006821
381041	Guimaraes, SF	2010-а	Residue Study of Pyraclostrobin and Fluxapyroxad in Melon (Fruits) After Treatment with BAS 703 02 F Under Field Conditions in Brazil, BASF S.A., BASF DocID 2012/3000488
381039_1	Guimaraes, SF	2010-b	Residue Study of Pyraclostrobin and Fluxapyroxad in Watermelon (Fruit) After Treatment with BAS 703 02 F Under Field Conditions in Brazil, BASF S.A., BASF DocID 2013/30013461
434965	Guimaraes, SF	2013-а	Study of Fluxapyroxad Residues in Banana (Fruits) After Treatment with BAS 700 04 F Under Field Conditions in Brazil, BASE S.A., BASE DocID 2013/3012923
434965_1	Guimaraes, SF	2013-b	Study of Fluxapyroxad Residues in Banana (Whole Fruit, Peel and Pulp) After Treatment with BAS 700 04 F Under Field Conditions in Costa Rica, Ecuador and Colombia, BASF S.A., BASF DocID 2013/3012924
435452	Guimaraes, SF	2014-a	Study of Fluxapyroxad Residues in Citrus (Whole Fruit, Peel and Pulp) After Treatment with BAS 703 02 F Under Field Conditions in Brazil and Argentina, BASF S.A., BASF DocID 2014/3004545
435453	Guimaraes, SF	2014-b	Study of Pyraclostrobin and Fluxapyroxad Residues in Citrus (Fruits and Processed Fractions) After Treatment with BAS 703 02 F Under Field Conditions in Brazil, BASF S.A., BASF DocID 2014/3004544
2009/ 7003643	Johnston, RL & Saha, M	2010	Magnitude of BAS 700 F Residues in Raw Agricultural Commodities of Potatoes and Sugar Beets Following Applications of BAS 700 AE F. BASF Agricultural Research Centre, Research Triangle Park NC, United States of America. Report No. 2000/7002643. Unpublished
381043	Jones, B	2011	Study of Pyraclostrobin and Fluxapyroxad Residues in Papaya (Fruits) After Treatment with BAS 703 02 F Under Field Conditions in Brazil, BASF S.A., BASF DocID 2013/3006542

REFERENCES

-

Code	Author	Year	Title, Institution, Report reference
2009/ 7003328	Jordan, JM	2010	Magnitude of BAS 700 F Residues in Stonefruit Following Applications of BAS 700 AE F. BASF Agricultural Research Centre, Research Triangle Park NC, United States of America.
407715	Korpalski, SJ	2012-а	Applications of BAS 700 01 F to Strawberry, Eurofins
407716	Korpalski, SJ	2012-b	Agroscience Services Inc., BASF DocID 2012//000169 Magnitude and Decline of Fluxapyroxad Residues Following Application of BAS 700 01 F to Berries (Crop Group 13),
406885	Kramm, R	2013-a	Eurofins Agroscience Services Inc., BASF DocID 2012/7000170 Study of the Residue Behaviour of BAS 700 F After Application in the Furrow Before Planting and on the Seed Potatoes Directly After Planting with BAS 700 04 F Under Field Conditions in United Kingdom, Belgium, Netherlands and Germany, 2011,
406886	Kramm, R	2013-b	BASF S.E., BASF DocID 2012/1137316 Study on the Residue Behaviour of Fluxapyroxad in Potatoes After Treatment of the Seed Potatoes with BAS 700 04 F and Planting Under Field Conditions in Germany, Southern France
429832	Lange, S & Korpalski, SJ	2013	and Spain, 2012, BASF S.E., BASF DocID 2013/1036304 Magnitude of Fluxapyroxad Residues Following Applications of BAS 700 01 F to Strawberry, Eurofins Agroscience Services Inc.,
386591	Norris, FA	2012	Magnitude of the Residue of BAS 700 F in Carrot and Radish, American Agricultural Services Inc. BASE DocID 2011/7005301
421251	Schaufele, M	2013	Residue Study (At Harvest) with BAS 700 04 F Applied in the Furrow Directly Before Planting and on the Seed Potatoes Directly After Planting in Southern France, Greece, Italy and Spain in 2012, Huntingdon Life Sciences, BASF DocID 2012/1352716
413126	Schreier, T	2012-а	Magnitude of Residues of BAS 700 F in Cherries Following Applications of BAS 700 01 F, SGS North America Inc., BASF DocID 2011/7004953
386949	Schreier, T	2012-b	Magnitude of the Residue of BAS 700 F in/on Sugar cane Raw Agricultural Commodities and Processed Fractions, SGS North America Inc. BASE DocID 2012/7003749
366267	Schreier, T	2013-а	Magnitude of Fluxapyroxad Residues in Brassica Vegetables, SGS North America Inc., BASF DocID 2013/7002271
407717	Schreier, T	2013-b	Magnitude of Residues of BAS 700 F in Leafy Vegetables Following Applications of BAS 700 01 F and BAS 700 04 F, SGS North America Inc., BASF DocID 2013/7002138
417891	Schreier, T	2014	Magnitude of Residues of Fluxapyroxad in Cotton Following Applications of BAS 700 01 F, SGS North America Inc., BASF DocID 2014/7000422
717219	Schreier, T	2015	Magnitude of Residues of Fluxapyroxad in Carrot Following Applications of BAS 700 01 F
407770	Thiel, A	2012	Magnitude and Decline of Residues of Fluxapyroxad in Rice Following Applications of BAS 700 04 F, ABC Laboratories Inc., BASE DocID 2012/7000161
2010/ 7003693	White, MT	2010	Magnitude of BAS 700 F Residues in Raw Agricultural Commodities of the Cereal Grains and Forage. Fodder and Straw of Cereal Grains Crop Groups Following Applications of BAS 700 AE F. BASF Agricultural Research Centre, Research Triangle Park NC, United States of America. Report No. 2010/7003693. Unpublished.
417892	Woodard, DL & Brungardt, JN	2014	Magnitude of Fluxapyroxad Residues in Cotton Processed Fractions Following Applications of BAS 703 02 F to Cotton, SynTech Research Laboratory Services, LLC., BASF DocID 2014/7000423
407712	Wyatt, DR	2012	Magnitude and Decline of the Residues of Fluxapyroxad in or on Tree Nuts Raw Agricultural Commodities Following Three Foliar Applications of BAS 700 01 F Fungicide, The Carringers Inc., BASF DocID 2012/7000159